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A Survey of Parallel Programming Models
and Tools in the Multi and Many-core Era

J. Diaz, C. Muñoz-Caro and A. Niño

AAbstract— In this work, we present a survey of the different parallel programming models and tools available today with special 
consideration to their suitability for high performance computing. Thus, we review the shared and distributed memory 
approaches, as well as the current heterogeneous parallel programming model. In addition, we analyze how the partitioned 
global address space (PGAS) and hybrid parallel programming models are used to combine the advantages of shared and 
distributed memory systems. The work is completed by considering languages with specific parallel support and the distributed 
programming paradigm. In all cases, we present characteristics, strengths and weaknesses. The study shows that the 
availability of multicore CPUs has given new impulse to the shared memory parallel programming approach. In addition, we find 
that hybrid parallel programming is the current way of harnessing the capabilities of computer clusters with multicore nodes. On 
the other hand, heterogeneous programming is found to be an increasingly popular paradigm, as a consequence of the 
availability of multicore CPUs+GPUs systems. The use of open industry standards like OpenMP, MPI or OpenCL, as opposed to 
proprietary solutions, seems to be the way to uniformize and extend the use of parallel programming models. 

Index Terms—Parallelism and Concurrency, Distributed programming, Heterogeneous (hybrid) systems.  
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1 INTRODUCTION

ICROPROCESSORS based on a single processing 
unit (CPU) drove performance increases and cost 
reductions in computer applications for more than

two decades. However, this process reached a limit around 
2003 due to heat dissipation and energy consumption issues 
[1]. These problems have limited the increase of CPU clock 
frequencies and the number of tasks that can be performed 
within each clock period. The solution adopted by processor 
developers was to switch to a model where the microproces-
sor has multiple processing units known as cores [2]. Nowa-
days, we can speak of two approaches [2]. The first, multi-
core approach, integrates a few cores (currently between two 
and ten) into a single microprocessor, seeking to keep the 
execution speed of sequential programs. Actual laptops and 
desktops incorporate this kind of processor. The second, 
many-core approach uses a large number of cores (currently
as many as several hundred) and is specially oriented to the 
execution throughput of parallel programs. This approach is 
exemplified by the Graphical Processing Units (GPUs) 
available today. Thus, parallel computers are not longer 
expensive and elitist devices, but commodity machines we 
find everywhere. Clearly, this change of paradigm has had 
(and will have) a huge impact on the software developing 
community [3].

Most of the software applications are developed follow-
ing the sequential execution model, which is naturally im-
plemented on traditional single-core microprocessors. There-
fore, each new, more efficient, generation of single-core 

processors translates into a performance increase of the 
available sequential applications. However, the current stal-
ling of clock frequencies prevents further performance im-
provements. In this sense, it has been said that “sequential 
programming is dead” [4], [5]. Thus, in the present scenario 
we cannot rely on more efficient cores to improve perfor-
mance but in the appropriate coordinate use of several cores, 
i.e., in concurrency. So, the applications that can benefit 
from performance increases with each generation of new 
multicore and many-core processors are the parallel ones. 
This new interest in parallel program development has been 
called the “concurrency revolution” [3]. Therefore, parallel 
programming, once almost relegated to the High Perfor-
mance Computing community (HPC), is taken a new star 
role on the stage.

Parallel computing can increase the applications perfor-
mance by executing them on multiple processors. Unfortu-
nately, the scaling of application performance has not 
matched the scaling of peak speed, and the programming 
burden continues to be important. This is particularly prob-
lematic because the vision of seamless scalability needs the 
applications to scale automatically with the number of pro-
cessors. However, for this to happen, the applications have 
to be programmed to exploit parallelism in the most efficient 
way. Thus, the responsibility for achieving the vision of 
scalable parallelism falls on the applications developer [6]. 

In this sense, there are two main approaches to paral-
lelize applications: auto-parallelization and parallel pro-
gramming [7]. They differ in the achievable application 
performance and ease of parallelization. In the first case, the 
sequential programs are automatically parallelized using ILP 
(instruction level parallelism) or parallel compilers. Thus, 
the main advantage is that existing applications just need to 
be recompiled with a parallel compiler, without modifica-
tions. However, due to the complexity of automatically 
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transforming sequential algorithms into parallel ones, the 
amount of parallelism reached using this approach is low. 
On the other hand, in the parallel programming approach, 
the applications are specifically developed to exploit paral-
lelism. Therefore, developing a parallel application involves 
the partitioning of the workload into tasks, and the mapping 
of the tasks into workers (i.e., the computers where the tasks 
will be processed). In general, parallel programming obtains 
a higher performance than auto parallelization but at the 
expense of more parallelization efforts. Fortunately, there are 
some typical kinds of parallelism in computer programs
such as task, data, recursive, and pipelined parallelism [8], 
[9], [10]. In addition, much literature is available about the 
suitability of algorithms for parallel execution [11], [12] and 
about the design of parallel programs [10], [13], [14], [15]. 
From the design point of view, different patterns for exploit-
ing parallelism have been proposed [8], [10]. A pattern is a 
strategy for solving recurring problems in a given field. In 
addition, the patterns can be organized as part of a pattern 
language, allowing the user to use the patterns to build com-
plex systems. This approach applied to parallel program-
ming is presented in [10]. Here, the pattern language is or-
ganized in four design spaces or phases: finding concurren-
cy, algorithm structure, supporting structures, and imple-
mentation mechanisms. A total of nineteen design patterns 
are recognized and organized around the first three phases.
In particular, four patterns corresponding to the supporting 
structures phase can be related to the different parallel pro-
gramming models [10]. These are: SPMD (Single Program 
Multiple data, where the same program is executed several 
times with different data), Master/Worker (where a master 
process sets up a pool of worker processes and a bag of 
tasks), loop parallelism (where different iterations of one or 
more loops are executed concurrently), and fork/join (where 
a main process forks off several other processes that execute 
concurrently until they finally join in a single process again).

Parallel systems, or architectures, fall into two broad 
categories: shared memory and distributed memory [8]. In 
shared memory architectures we have a single memory ad-
dress space accessible to all the processors. Shared memory 
machines have existed for a long time in the servers and 
high-end workstations segment. However, at present, com-
mon desktop machines fall into this category since in multi-
core processors all the cores share the main memory. On the 
other hand, in distributed memory architectures there is not 
global address space. Each processor owns its own memory. 
This is a popular architectural model encountered in net-
worked or distributed environments such as clusters or Grids 
of computers. Of course, hybrid shared-distributed memory 
systems can be built.

The conventional parallel programming practice in-
volves a pure shared memory model [8], usually using the 
OpenMP API [16], in shared memory architectures, or a pure 
message passing model [8], using the MPI API [17], on 
distributed memory systems. The largest and fastest comput-
ers today employ both shared and distributed memory archi-
tectures. This provides flexibility when tuning the paral-
lelism in the programs to generate maximum efficiency and 
an appropriate balance of the computational and communi-
cation loads. In addition, the availability of General Purpose 

computation on GPUs (GPGPUs) in actual multicore sys-
tems has lead to the Heterogeneous Parallel Programming 
(HPP) model. HPP seeks to harness the capabilities of multi-
core CPUs and many-core GPUs. Accordingly to all theses
hybrid architectures, different parallel programming models 
can be mixed in what is called hybrid parallel programming. 
A wise implementation of hybrid parallel programs can 
generate massive speedups in the otherwise pure MPI or 
pure OpenMP implementations [18]. The same can be ap-
plied to hybrid programming involving GPUs and distri-
buted architectures [19], [20]. 

In this paper, we review the parallel programming mod-
els with especial consideration of their suitability for High 
Performance Computing (HPC) applications. In addition, we 
consider the associated programming tools. Thus, in Section 
2 we present a classification of parallel programming mod-
els in use today. Sections 3 to 8 review the different models 
presented in Section 2. Finally, in Section 9 we collect the 
conclusions of the work.

22 CLASSIFICATION OF PARALLEL PROGRAMMING 
MODELS

Strictly speaking, a parallel programming model is an ab-
straction of the computer system architecture [10]. There-
fore, it is not tied to any specific machine type. However, 
there are many possible models for parallel computing be-
cause of the different ways several processors can be put 
together to build a parallel system. In addition, separating 
the model from its actual implementation is often difficult. 
Parallel programming models and its associated implemen-
tations, i.e., the parallel programming environments defined 
by Mattson et al. [10], are overwhelming. However, in the 
late 1990s two approaches become predominant in the HPC 
parallel programming landscape: OpenMP for shared memo-
ry and MPI for distributed memory [10]. This allows us to
define the classical or pure parallel models. In addition, the 
new processor architectures, multicore CPUs and many-core 
GPUs, have produced heterogeneous parallel programming 
models. Also, the simulation of a global memory space in a 
distributed environment leads to the Partitioned Global 
Address Space (PGAS) model. Finally, the architectures 
available today allow definition of hybrid, shared-
distributed memory + GPU, models. The parallel computing 
landscape would not be complete without considering the 
languages with parallel support and the distributed pro-
gramming model. All these topics are presented in the next 
sections.

3 PURE PARALLEL PROGRAMMING MODELS

Here, we consider parallel programming models using a
pure shared or distributed memory approach. As such, we 
consider the threads, shared memory OpenMP, and distri-
buted memory message passing models. Table 1 collects the 
characteristics of the usual implementations of these models.

3.1 POSIX Threads
In this model, we have several concurrent execution paths 
(the threads) that can be controlled independently. A thread 
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is a lightweight process having its own program counter and 
execution stack [9]. The model is very flexible, but low 
level, and is usually associated to shared memory and oper-
ating systems. In 1995 a standard was released [21]: the 
POSIX.1c, Threads extensions (IEEE Std 1003.1c-1995), or 
as it is usually called Pthreads.

The Pthreads, or Portable Operating System Interface 
(POSIX) Threads, is a set of C programming language types 
and procedure calls [7], [22], [23]. Pthreads is implemented 
as a header (pthread.h) and a library for creating and mani-
pulating each thread. The Pthreads library provides functions 
for creating and destroying threads and for coordinating 
thread activities via constructs designed to ensure exclusive 
access to selected memory locations (locks and condition 
variables). This model is especially appropriate for the 
fork/join parallel programming pattern [10].

In the POSIX model, the dynamically allocated heap 
memory, and obviously the global variables, is shared by the 
threads. This can cause programming difficulties. Often, one 
needs a variable that is global to the routines called within a 
thread but that is not shared between threads. A set of 
Pthreads functions is used to manipulate thread local storage 
to address these requirements. Moreover, when multiple 
threads access the shared data, programmers have to be 
aware of race conditions and deadlocks. To protect critical 
section, i.e., the portion of code where only one thread must
reach shared data, Pthreads provides mutex (mutual exclu-
sion) and semaphores [24]. Mutex permits only one thread 
to enter a critical section at a time, whereas semaphores 
allow several threads to enter a critical section.

In general, Pthreads is not recommended as a general-
purpose parallel program development technology. While it 
has its place in specialized situations, and in the hands of 
expert programmers, the unstructured nature of Pthreads 
constructs makes difficult the development of correct and 
maintainable programs. In addition, recall that the number of 
threads is not related to the number of processors available. 
These characteristics make Pthreads programs not easily 
scalable to a large number of processors [6]. For all these 
reasons, the explicitly-managed threads model is not well 
suited for the development of HPC applications.

33.2 Shared Memory OpenMP
Strictly speaking, this is also a multithreaded model, as the 
previous one. However, here we refer to a shared memory 
parallel programming model that is task oriented and works
at a higher abstraction level than threads. This model is in 
practice inseparable from its practical implementation: 
OpenMP.

OpenMP [25] is a shared memory application program-
ming interface (API) whose aim is to ease shared memory 
parallel programming. The OpenMP multithreading inter-
face [16] is specifically designed to support HPC programs. 
It is also portable across shared memory architectures. 
OpenMP differs from Pthreads in several significant ways. 
While Pthreads is purely implemented as a library, OpenMP 
is implemented as a combination of a set of compiler direc-
tives, pragmas, and a runtime providing both management of 
the thread pool and a set of library routines. These directives 
instruct the compiler to create threads, perform synchroniza-
tion operations, and manage shared memory. Therefore, 
OpenMP does require specialized compiler support to under-
stand and process these directives. At present, an increasing 
number of OpenMP versions for Fortran, C, and C++ are 
available in free and proprietary compilers, see Appendix 1
in the supplemental material. 

In OpenMP the use of threads is highly structured be-
cause it was designed specifically for parallel applications. 
In particular, the switch between sequential and parallel
sections of code follows the fork/join model [9]. This is a 
block-structured approach for introducing concurrency. A 
single thread of control splits into some number of indepen-
dent threads (the fork). When all the threads have completed 
the execution of their specified tasks, they resume the se-
quential execution (the join). A fork/join block corresponds 
to a parallel region, which is defined using the PARALLEL 
and END PARALLEL directives.

The parallel region enables a single task to be replicated 
across a set of threads. However, in parallel programs is very 
common the distribution of different tasks across a set of 
threads, such as parallel iterations over the index set of a 
loop. Thus, there is a set of directives enabling each thread 
to execute a different task. This procedure is called work-
sharing. Therefore, OpenMP is specially suited for the loop 

TABLE 1. PURE PARALLEL PROGRAMMING MODELS IMPLEMENTATIONS

a) https://computing.llnl.gov/tutorials/pthreads; b) http://www.openmp.org;  c) http://www.mcs.anl.gov/research/projects/mpi
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parallel program structure pattern, although the SPMD and 
fork/join patterns also benefit from this programming envi-
ronment [10].

OpenMP provides application-oriented synchronization 
primitives, which make easier to write parallel programs. By
including these primitives as basic OpenMP operations, it is 
possible to generate efficient code more easily than, for 
instance, using Pthreads and working in terms of mutex and 
condition variables. 

In May 2008 the OpenMP 3.0 version was released [26]. 
The major change in this version was the support for explicit 
tasks. Explicit tasks ease the parallelization of applications 
where units of work are generated dynamically, as in recur-
sive structures or in while loops. This new characteristic is 
very powerful. By supporting while loops and other iterative 
control structures, it is possible to handle graph algorithms 
and dynamic data structures, for instance.

The characteristics of OpenMP allow for a high abstrac-
tion level, making it well suited for developing HPC appli-
cations in shared memory systems. The pragma directives 
make easy to obtain concurrent code from serial code. In 
addition, the existence of specific directives eases to paral-
lelize loop-based code. However, the high cost of traditional 
multiprocessor machines prevented the widespread use of 
OpenMP. Nevertheless, the ubiquitous availability of multi-
core processors has renewed the interest for this parallel 
programming model. 

33.3 Message Passing
Message Passing is a parallel programming model where 
communication between processes is done by interchanging 
messages. This is a natural model for a distributed memory 
system, where communication cannot be achieved by shar-
ing variables. There are more or less pure realizations of this 
model such as ARMCI, which allows a programming ap-
proach between message passing and shared memory. 
ARMCI is detailed later in section 5.2.1. However, over 
time, a standard has evolved and dominated for this model: 
the Message Passing Interface (MPI).

MPI is a specification for message passing operations 
[6], [27], [28], [29]. MPI is a library, not a language. It spe-
cifies the names, calling sequences and results of the subrou-
tines or functions to be called from Fortran, C or C++ pro-
grams. Thus, the programs can be compiled with ordinary 
compilers but must be linked with the MPI library. MPI is 
currently the de facto standard for HPC applications on 
distributed architectures. By its nature it favors the SPMD
and, to a lesser extent, the Master/Worker program structure 
patterns [10]. Appendix 2 in the supplemental material col-
lects some well-known MPI implementations. It is interest-
ing to note that MPICH-G2 and GridMPI are MPI imple-
mentations for computational Grid environments. Thus, MPI 
applications can be run on different nodes of computational 
Grids implementing well established middlewares such as 
Globus (the de facto standard, see Section 8.1 later) [30]. 

MPI addresses the message-passing model [6], [27], 
[28]. In this model, the processes executed in parallel have 
separate memory address spaces. Communication occurs 
when part of the address space of one process is copied into 

the address space of another process. This operation is coop-
erative and occurs only when the first process executes a 
send operation and the second process executes a receive 
operation. In MPI, the workload partitioning and task map-
ping have to be done by the programmer, similarly to 
Pthreads. Programmers have to manage what tasks are to be 
computed by each process. Communication models in MPI 
comprise point-to-point, collective, one-sided and parallel 
I/O operations. Point-to-point operations such as the 
“MPI_Send”/”MPI_Recv” pair facilitate communications 
between processes. Collective operations such as 
“MPI_Bcast” ease communications involving more than two 
processes. Regular MPI send/receive communication uses a 
two-sided model. This means that matching operations by 
sender and receiver are required. Therefore, some amount of 
synchronization is needed to manage the matching of sends 
and receives, and the associated buffer space, of messages.
However, starting from MPI- 2 [31], one-sided communica-
tions are possible. Here, no sender-receiver matching is 
needed. Thus, one-sided communication decouples data 
transfer from synchronization. One-sided communication 
allows remote memory access. Three communication calls 
are provided: “MPI_Put” (remote write), “MPI_Get” (re-
mote read) and “MPI_Accumulate” (remote update). Finally, 
parallel I/O is a major component of MPI-2, providing 
access to external devices exploiting data types and commu-
nicators [28]. 

On the other hand, with Symmetric Multi-Processing
(SMP) machines being commonly available, and multicore 
processors becoming the norm, a programming model to be 
considered is a mixture of message passing and multithread-
ing. In this model, user programs consist of one or more 
MPI processes on each SMP node or multicore processor, 
with each MPI process itself comprising multiple threads. 
The MPI-2 Standard [31] has clearly defined the interaction 
between MPI and user created threads in an MPI program. 
This specification was written with the goal of allowing 
users to write multithreaded MPI programs easily. Thus, 
MPI supports four “levels” of thread safety that a user must 
explicitly select:
- MPI THREAD SINGLE. A process has only one thread 

of execution.
- MPI THREAD FUNNELED. A process may be multith-

readed, but only the thread that initialized MPI can make 
MPI calls.

- MPI THREAD SERIALIZED. A process may be mul-
tithreaded, but only one thread at a time can make MPI 
calls.

- MPI THREAD MULTIPLE. A process may be multith-
readed and multiple threads can call MPI functions si-
multaneously.
Reference [31] provides further details about thread 

safety. In addition, in [32] the authors analyze and discuss 
critical issues of thread-safe MPI implementations. 

In summary, MPI is well suited for applications where 
portability, both in space (across different systems existing
now) and in time (across generations of computers), is im-
portant. MPI is also an excellent choice for task-parallel 
computations and for applications where the data structures 
are dynamic, such as unstructured mesh computations.
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Over the last two decades (the computer cluster era), 
message passing, and specifically MPI, has become the HPC 
standard approach. Thus, most of the current scientific code 
allows for parallel execution under the message passing 
model. Examples are: the molecular electronic structure 
codes NWChem [33] and Gamess [34], or mpiBLAST [35]
the parallel version of the Basic Local Alignment Search 
Tool (BLAST) used to find regions of local similarity be-
tween nucleotide or protein sequences. Message passing 
(colloquially understood as MPI) is so tied to HPC and 
scientific computing that, at present, in many scientific 
fields HPC is synonymous of MPI programming.

44 HETEROGENEOUS PARALLEL PROGRAMMING 
MODELS

In the beginning of 2001 NVIDIA introduced the first pro-
grammable GPU: GeForce3. Later, in 2003 the Sig-
graph/Eurographics Graphics Hardware workshop, held in 
San Diego, showed a shift from graphics to non-graphics 
applications of the GPUs [36]. Thus, the GPGPU concept 
was born. Today, it is possible to have, in a single system, 
one or more host CPUs and one or more GPUs. In this 
sense, we can speak of heterogeneous systems. Therefore, a 
programming model oriented toward these systems has ap-
peared. The heterogeneous model is foreseeable to become a 
mainstream approach due to the microprocessors industry 
interest in the development of Accelerated Processing Units 
(APUs). An APU integrates the CPU (multicore) and a GPU 
on the same die. This design allows for a better data transfer 
rate and lower power consumption. AMD Fusion [37] and
Intel Sandy Bridge [38] APUs are examples of this tendency.

In the first CPU+GPU systems, languages as Brook [39]
or Cg [40] were used. However, NVIDIA has popularized 
CUDA [41] as the primary model and language to program 
their GPUs. More recently, the industry has worked together 
on the OpenCL standard [42] as a common model for hete-
rogeneous programming. In addition, different proprietary 
solutions, such as Microsoft’s DirectCompute [43] or Intel’s 
Array Building Blocks (ArBB) [44], are available. This 
section reviews these approaches.

4.1 CUDA
CUDA (Compute Unified Device Architecture) is a parallel 
programming model developed by NVIDIA [41]. The CU-
DA project started at 2006 with the first CUDA SDK re-
leased in early 2007. The CUDA model is designed to de-
velop applications scaling transparently with the increasing 
number of processor cores provided by the GPUs [1], [45]. 
CUDA provides a software environment that allows devel-
opers to use C as high-level programming language. In addi-
tion, other languages bindings or application programming 
interfaces are supported; see Appendix 3 in the supplemental 
material. 

For CUDA, a parallel system consists of a host (i.e., 
CPU) and a computation resource or device (i.e., GPU). The 
computation of tasks is done in the GPU by a set of threads 
running in parallel. The GPU threads architecture consists in
a two-level hierarchy, namely the block and the grid, see 
Fig. 1.  

The block is a set of tightly coupled threads, each identi-
fied by a thread ID. On the other hand, the grid is a set of 
loosely coupled blocks with similar size and dimension. 
There is no synchronization at all between the blocks, and an 
entire grid is handled by a single GPU. The GPU is orga-
nized as a collection of multiprocessors, with each multipro-
cessor responsible for handling one or more blocks in a grid. 
A block is never divided across multiple multiprocessors. 
Threads within a block can cooperate by sharing data 
through some shared memory, and by synchronizing their 
execution to coordinate memory accesses. More detailed 
information can be found in [41], [46]. Moreover, there is a 
best practices guide that can be useful to programmers [47]. 
CUDA is well suited for implementing the SPMD parallel 
design pattern [10]. 

Worker management in CUDA is done implicitly. That is, 
programmers do not manage thread creations and destruc-
tions. They just need to specify the dimension of the grid 
and block required to process a certain task. Workload parti-
tioning and worker mapping in CUDA is done explicitly. 
Programmers have to define the workload to be run in paral-
lel by using the function “Global Function” and specifying 
the dimension and size of the grid and of each block.

The CUDA memory model is shown in Fig. 1. At the bot-
tom of the figure, we see the global and constant memories. 
These are the memories that the host code can write to and 
read from. Constant memory allows read-only access by the 
device. Inside a block, we have the shared memory and the 
registers or local memory. The shared memory can be ac-
cessed by all threads in a block. The registers are indepen-
dent for each thread.

Finally, we would like to mention a recent initiative by
Intel. This initiative is called Knights Ferry [48], [49], and is 
being developed under the Intel Many Integrated Core 
(MIC) architecture. Knight Ferry is implemented on a PCI 
card with 32 x86 cores. The MIC supports a more classical 
coherent shared memory parallel programming paradigm 
than CUDA. Moreover, it will be programmed using native 
C/C++ compilers from Intel. 

Fig. 1. CUDA (OpenCL) Architecture and Memory Model

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



6 IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID

 

44.2 OpenCL
OpenCL (Open Computing Language) [42], [50], [51] is 

an open royalty-free standard for general purpose parallel 
programming across CPUs, GPUs and other processors. The 
first specification of OpenCL, OpenCL 1.0, was finished in 
late 2008 by the Khronos Group [42]. Essentially, OpenCL 
distinguishes between the devices (usually GPUs or CPUs) 
and the host (CPU). The idea behind OpenCL is to write 
kernels (functions that execute on OpenCL devices) and 
APIs for creating and managing these kernels. The kernels 
are compiled for the targeted device in runtime, during the 
application execution. This enables the host application to 
take advantage of all the computing devices in the system.

The OpenCL operational model can be described as four
interrelated models: the platform, execution, memory, and 
programming models. The platform model is viewed from a 
hierarchical and abstract perspective. In this model, a host 
coordinates execution, transferring data to and from an array 
of Compute Devices. Each Compute Device is composed of 
an array of Compute Units. Each Compute Unit is composed 
of an array of Processing Elements.

Execution of an OpenCL program involves simultaneous 
execution of multiple instances of a kernel on one or more 
OpenCL devices. A kernel is the basic executable code unit.
It is called work-item and has a unique ID. Work-items can 
be organized into work-groups for synchronization and 
communication purposes. The different executions of a pro-
gram are queued and controlled by the host application. This 
last, sets up the context in which the kernels run, including 
memory allocation, data transfer among memory objects, 
and creation of command queues used to control the se-
quence in which commands are run. However, the pro-
grammer is responsible for synchronizing any necessary 
execution order. 

OpenCL defines a multi-level memory model similarly to 
CUDA, see Fig. 1. First, we have the Private memory that 
can only be used by a single work-item. In an upper level, 
we found the Local memory that can be used by all work-
items in a work-group. Next, the constant memory is re-
served for read-only access by work-items of any work-
group in a single compute device. This memory can be writ-
ten and read by the host application, but remains constant 
during the execution of a kernel. Finally, we have the global 
memory, which is available for reading and writing by all 
work-items in all work-groups on the device. Like CUDA, 
OpenCL is well suited for implementing the SPMD parallel 
design pattern [10].

OpenCL has been designed to be used not only in GPUs 
but also in other platforms like multicore CPUs. Thus, it can 
support both data parallel [52], and task parallel [53] pro-
gramming patterns [10], which are well suited for GPUs and 
CPUs architectures respectively. 

OpenCL provides APIs for high-level languages. The 
main supported APIs are for C [50] and C++ [54]. However, 
there are other language bindings or application program-
ming interfaces supported, see Appendix 4 in the supple-
mental material. 

4.3 DirectCompute
DirectCompute is Microsoft’s approach to GPU program-
ming. DirectCompute is part of the Microsoft DirectX APIs 
collection [43]. In fact, it is also known as DirectX11 Com-
pute Shader. It was initially released with the DirectX 11 
API, but runs on both DirectX 10 and DirectX 11 graphics 
processing units. In particular, it was introduced thanks to 
the new Shader Model 5 [55] provided in DirectX 11, which 
allows computation independently of the graphic pipeline, 
therefore suitable for GPGPUs. The main drawback of Di-
rectCompute is that it only works on Windows platforms.

4.4 Array Building Blocks (ArBB)
Intel’s Array Building Blocks (ArBB) provides a generalized 
vector-parallel-programming solution for data-intensive 
mathematical computation [44], [56], [57].  Users express 
computations as operations on arrays and vectors. ArBB 
comprises a standard C++ library interface and a powerful 
runtime. A just-in-time compiler supplied with the library 
translates the operations into target-dependent code, where a
target could be the host CPU or an attached GPU. As run-
time, ArBB uses Intel’s Threading Building Blocks [58], 
which contributes to abstract platform details and threading 
mechanisms for scalability and performance. Intel’s ArBB 
can run data-parallel vector computations on a possibly 
heterogeneous system. By design, Intel ArBB prevents pa-
rallel programming bugs such as data races and deadlocks.

Thanks to the GPUs, heterogeneous programming is be-
coming a valuable tool in the HPC arena. As a few exam-
ples, we have applications in linear algebra [59], molecular 
dynamics [60], medical imaging [61] or bioinformatics [62]. 
For excellent surveys of GPUs capabilities and applications 
see [63], [64]. 

5 PARTITIONED GLOBAL ADDRESS SPACE

Shared memory parallel programs are considered easier to 
develop than message passing programs. However, message 
passing usually achieves better scalability and portability. 
This is because shared memory parallel programming mod-
els do not exploit cache data locality effectively. Distributed 
Shared Memory (DSM) models try to combine the advan-
tages of both approaches, supporting the notion of shared 
memory in a distributed architecture. DSM approaches are 
in the arena since the late 1980’s [65]. In DSM models, each
processor sees its own memory operations in the order speci-
fied by its program. This does not automatically protect 
processors from seeing each other’s operations (and data)
out of order. This results in a memory consistency problem 
that was a key issue in the development of early DSM sys-
tems [65]. The lack of locality awareness enhances the prob-
lem.

The Partitioned Global Address Space (PGAS) memory 
model is a DSM approach that implements a locality-aware 
paradigm [66]. PGAS provides a global address space, along 
with an explicitly Single Program Multiple Data (SPMD) 
control model. PGAS implementations typically make the 
distinction between local and remote memory references. 
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This permits to exploit data locality, which leads to a per-
formance increase on distributed memory hardware [67]. In 
the PGAS model, SPMD threads (or processes) share a part 
of their address space. In addition, a part of the shared space 
is local to each thread or process. Data structures can be 
allocated either globally or privately. Global data structures 
are distributed across address spaces, typically under the 
control of the programmer. Remote global data are accessi-
ble to any thread as simple assignment or dereference opera-
tions. The compiler and runtime are responsible for convert-
ing such operations into messages between processes on a 
distributed memory machine. Thus, programs using the 
PGAS model can exploit locality by making each thread or 
process to work principally with its local data [66], [67]. 

While programs may require nothing else but communi-
cation through global data structures, most PGAS languages 
provide APIs for bulk communication and synchronization. 
In this sense, several libraries are being used as PGAS run-
times. Apart from the runtime libraries, there are languages 
specifically designed to support the PGAS memory model. 
In this context, languages developed under DARPA’s High 
Productivity Computing Systems (HPCS) project [68] de-
serve special consideration. Runtimes, PGAS and HPCS 
languages are considered in the following subsections. 

55.1 PGAS runtimes
Here, we present the most common runtimes available.

5.1.1 Global-Address Space Networking 
(GASNet) 

GASNet is a language-independent, low-level networking 
layer that provides network-independent primitives and 
high-performance one-sided communication [69], [70]. 
GASNet is intended to be used as a compilation target and 
as a tool for runtime libraries development. The design is 
partitioned into two layers to maximize portability without 
sacrificing performance. The lower layer is a general inter-
face called the GASNet core API. This is based on Active 
Messages [71], and is implemented directly on top of each 
individual network architecture. The upper layer is a wider 
and more expressive interface called the GASNet extended 
API, which provides high-level operations such as remote 
memory access and various collective operations. In the 
context of PGAS languages, UPC, Co-Array Fortran, Tita-
nium, and Chapel all use GASNet. These languages are 
considered later in the present section.

5.1.2 Aggregate Remote Memory Copy Interface 
(ARMCI)

ARMCI [72], [73], [74] is a library offering remote memory 
copy functionality. In addition, ARMCI includes a set of 
atomic and mutual exclusion operations. ARMCI develop-
ment is driven by the need to support the global-address 
space communication model in contexts of regular or irregu-
lar distributed data structures, communication libraries, and 
compilers. One-sided put/get operations are allowed. ARM-
CI provides compatibility with message-passing libraries 

(primarily MPI), which is necessary for applications that 
frequently use hybrid shared-distributed memory program-
ming models. Both blocking and a non-blocking APIs are 
needed. The non-blocking API can be used by some applica-
tions to overlap computations and communications.  

5.1.3 Kernel Lattice Parallelism (KeLP)
KeLP [75] is a C++ class library built on the standard 

Message Passing Interface, MPI. Thus, it acts as a middle-
ware between the application and the low-level communica-
tion substrate. KeLP interoperates with MPI, which eases
low-level performance tuning. KeLP supports a small set of 
geometric programming abstractions to represent data struc-
ture and data motion. KeLP’s data orchestration model sepa-
rates the description of communication patterns from the 
interpretation of these patterns. The programmer uses intui-
tive geometric constructs to express dependence patterns 
among dynamic collections of arrays [76]. 

5.2 Languages supporting the PGAS model
Here, we consider the most significant ones.

5.2.1 Unified Parallel C (UPC)
Unified Parallel C (UPC) is an extension of the C program-
ming language designed for high performance computing on 
large-scale parallel machines [77], [78], [79]. The main 
goals are to provide an efficient access to the underlying 
machine and to establish a common syntax and semantics 
for parallel programming in C. UPC combines the pro-
grammability advantages of the shared memory paradigm, 
and the control over data layout and performance of message 
passing. The programmer is presented with a single shared, 
partitioned address space, where variables may be directly 
read and written by any processor, but each variable is phys-
ically associated with a single processor. UPC uses the
SPMD computation pattern [10]. The amount of parallelism 
is fixed at the program startup, typically with a single thread 
of execution per processor [78], [79]. 

5.2.2 Co-Array Fortran (CAF)/Fortran 2008
CAF appeared as a small extension of Fortran 95 for parallel 
processing [80], [81]. However, the most recent Fortran 
standard, Fortran 2008 [82], approved in September 2010, 
incorporates coarrays as part of the language definition.

The coarray extension addresses the two fundamental is-
sues of any parallel programming model: work distribution 
and data distribution [83]. With respect to work distribution, 
the coarray extension adopts the SPMD programming pat-
tern. Thus, a single program is replicated a fixed number of 
times. Each replication, called image, has its own set of data 
objects. The number of images may be equal to, greater or 
less than the number of physical processors. The images 
execute mostly asynchronously. Synchronization can be 
requested by the programmer through specific statements. 
On the other hand, with respect to data distribution, coarrays 
allow the programmer to specify the relationship among 
memory images. This is simple, since coarrays are like ordi-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



8 IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID

 

nary variables but have an index in square brackets for 
access between images. In this way, references without 
square brackets correspond to local data, while a square 
bracketed reference involves a communication between 
images.

Due to its novelty and lack of compiler support, Fortran 
2008 has not yet made its entrance in the HPC world. 

55.2.3 Titanium
Titanium is a language and system for high-performance 
parallel scientific computing. Titanium uses Java as its base, 
but it is not a strict extension of it. The main additions to 
Java are immutable classes, multidimensional arrays, an 
explicitly parallel SPMD pattern of computation with a 
global address space, and zone-based memory management 
[84], [85]. An important feature is that Titanium programs 
can run unmodified on uniprocessors, shared memory ma-
chines and distributed memory machines. Nonetheless, per-
formance tuning may be necessary to arrange an applica-
tion's data structures for distributed memory.

The development team is working on the design of pro-
gram analysis techniques and optimizing transformations for
Titanium programs. A compiler and a runtime system ex-
ploiting these techniques are also being considered [84]. The
compiler optimizes the code and translates Titanium into C. 
Then, it is compiled to native binaries by a C compiler and 
linked to the Titanium runtime libraries (there is no Java 
Virtual Machine).

5.3 High Productivity Computing Systems (HPCS) 
Languages

5.3.1 X10
X10 is a Java-derived, type-safe, parallel object-oriented 
language developed in the IBM PERCS project [86] as part 
of the DARPA program on High Productivity Computing 
Systems (HPCS) [68]. The fundamental goal of X10 is to 
enable scalable, high-performance, high-productivity trans-
formational programming for high-end computers. X10 
introduces a flexible treatment of concurrency, distribution 
and locality, within an integrated type system. It extends the 
PGAS model to the globally asynchronous, locally syn-
chronous (GALS) model, originally developed in hardware 
and in embedded software research [87]. Locality is ma-
naged explicitly using places, computational units with local 
shared memory. A program runs over a set of places. Each 
place can host data or run activities. An activity is a 
lightweight thread that can run on its place, or (explicitly or 
implicitly) asynchronously update memory, in other places 
[86], [88]. For synchronization, X10 uses “clocks”, which 
are a generalization of barriers. Clocks permit activities to 
synchronize repeatedly. They provide a structured, distri-
buted, and determinate form of coordination.

5.3.2 Chapel
Chapel [89] is a parallel programming language developed 
by Cray Inc. as part of DARPA’s HPCS program [68]. Cha-

pel is a portable language designed to improve the pro-
grammability of large-scale parallel computers, while 
matching or beating the performance and portability of cur-
rent programming models like MPI. Chapel supports a mul-
tithreaded execution model via high-level abstractions for 
data parallelism, task parallelism, concurrency, and nested 
parallelism. Chapel also includes locality-awareness, which 
provides distribution of shared data structures without re-
quiring a fragmentation of control structure. It also supports 
code reuse and rapid prototyping via object-oriented design 
and features for generic programming [88], [90]. 

5.3.3 Fortress
Fortress [91] is a new programming language designed by
SUN Microsystems for HPC with high programmability. 
This language is also part of DARPA’s HPCS program [68]. 
At present, Fortress is an open-source project. The name 
“Fortress” is derived from the intent to produce a “secure 
Fortran”, i.e., a language for HPC providing abstraction and 
type safety according to modern programming language 
principles. However, this is a completely new language in 
which all aspects of the design have been rethought from the 
ground up. As a result, it supports features such as transac-
tions, specification of locality, and implicit parallel computa-
tion, as integral features built into the core of the language. 
It has a novel type system to integrate functional and object-
oriented programming better. Thus, it supports mathematical 
notation and static checking of properties, such as physical 
units and dimensions, static type checking of multidimen-
sional arrays and matrices, and definitions of domain-
specific language syntax in libraries. Moreover, Fortress has 
been designed with the intent to be a "growable" language, 
gracefully supporting the addition of future language fea-
tures [88], [92]. 

Despite its undeniable advantages, PGAS is not a model 
suitable for general environments. In fact, two drawbacks 
make its adoption outside the HPC niche difficult. First, the 
PGAS model implicitly assumes that all processes run on 
similar hardware. Second, the PGAS model does not support 
dynamically spawning multiple activities. This makes diffi-
cult to handle many non-HPC/non-data-parallel applications, 
like those that require run-time dynamic load-balancing. For 
that reason, an extension called the Asynchronous Parti-
tioned Global Address Space (APGAS) has been proposed
[67]. 

6 HYBRID PROGRAMMING

Combining the shared memory and distributed memory 
programming models is an old idea [93]. The goal is to ex-
ploit the strengths of both models: the efficiency, memory 
savings and ease of programming of the shared memory 
model with the scalability of the distributed memory one. In 
fact, this is the ultimate target of the PGAS model. However, 
rather than developing new runtimes or languages, we can 
rely in mixing the already available programming models 
and tools. This approach is known as hybrid (parallel) pro-
gramming. This programming model is a modern software 
trend for the current hybrid hardware architectures. The 
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basic idea is to use message passing (usually MPI) across 
the distributed nodes and shared memory (usually OpenMP 
or even Pthreads) within a node. Hybrid programming can 
also involve the use of GPUs as source of computing power. 
Typically, CUDA is used here, although other GPU pro-
gramming approaches, such as OpenCL, could be used.
However, since OpenCL directly supports multi-GPU and 
GPU+CPU programming its use is not specially extended in 
the hybrid programming field.

Along this section, we will present the different hybrid 
approaches.

66.1 Combining Pthreads and MPI
Combining Pthreads and MPI we could take full advantage 
of the shared memory available on individual multicore
cluster nodes. The idea is to use Pthreads to extend MPI, 
improving the speed and efficiency of the program. In this 
way, Pthreads is used to generate concurrent tasks to be 
executed on a single processor with the results gathered 
using shared memory. In addition, MPI permits the commu-
nication between nodes, allowing working with the SMP 
cluster as a whole.

We have found several examples of this hybrid pro-
gramming model. In [94], the authors used it to develop a 
parallel file compression program. Other example is found 
in [95], where this model is used for discovering bounded 
prime numbers. A last example is found in [96], where this 
programming model is used to develop a parallel version of 
the RAxML code for phylogenetic studies. However, the use 
of this model is not widely extended due to the drawbacks 
that involve programming with Pthreads, see Section 3.1.

6.2 Combining MPI and OpenMP
The rationale of hybrid MPI/OpenMP programming is to 
take advantage of the features of both programming models. 
Thus, it mixes the explicit decomposition and task place-
ment of MPI with the simple and fine-grain parallelization 
of OpenMP. This model likely represents the most wide-
spread use of mixed programming on SMP clusters. The 
reasons are its portability and the fact that MPI and OpenMP 
are industry standards. However, it is not clear that this pro-
gramming model will always be the most effective mechan-
ism. So, it cannot be regarded as ideal for all codes. In prac-
tice, serious consideration must be given to the nature of the 
codes before embarking on a mixed mode implementation. 
Considerable work has gone into studying this hybrid model
[97], [98], [99]. Here, we have collected some reasons justi-
fying to combine MPI and OpenMP:
- The programming model matches the current hardware 

trend (multicore and multiprocessor machines).
- Some applications clearly expose two levels of paral-

lelism: coarse-grained (suitable for MPI), and fine-
grained (best suited for OpenMP).

- There are situations in which the application require-
ments or system restrictions may limit the number of 
MPI processes (scalability problems). Thus, OpenMP 
can offer an additional amount of parallelism.

- Some applications show an unbalanced workload at the 

MPI level. OpenMP can be used to address this issue by 
assigning a different number of threads to each MPI 
process.

- OpenMP avoids the extra communication overhead with-
in computer nodes induced by MPI. Thus, the memory 
latency and data movement within a node is reduced be-
cause it is possible to synchronize on memory instead of 
using synchronization barriers.

Nevertheless, there are also reasons that make the use of 
this programming model inefficient:
- Introducing OpenMP into an existing MPI code also 

means introducing the drawbacks of OpenMP such as:
o Limitations when controlling work distribution and 

synchronization.
o Overhead introduced by threads creation and syn-

chronization.
o Dependence on the quality of the compiler and the 

runtime support for OpenMP.
- Shared memory issues (for instance in ccNUMA archi-

tectures).
- The interaction of MPI and OpenMP runtime libraries 

may have negative side effects on the program’s perfor-
mance.

- Some applications naturally expose only one level of 
parallelism, and there may be no benefit in introducing a 
hierarchical parallelism pattern.

 
Most of the hybrid MPI/OpenMP code is based on a hie-

rarchical model, which makes possible to exploit large and 
medium-grain parallelism at the MPI level, and fine-grain 
parallelism at the OpenMP level. Thus, at high level, the 
program is explicitly structured as several MPI tasks, whose 
sequential code is enriched with OpenMP directives to add 
multi-threading features taking advantage of the presence of 
shared memory. This programming model can be imple-
mented in different ways depending on the overlap between 
communication and computation [98]. In particular, there are 
two main categories: no overlapping communica-
tion/computation and overlapping communica-
tion/computation. In the first one, there are no MPI calls 
overlapping with other application code in other threads. 
This category can be implemented in two ways [98]: 

1. MPI is called only outside parallel regions and on the 
master thread. The advantage of this method is that there 
is no message passing inside SMP nodes. Thus, we have 
no problem with the topology since the master thread
controls communications between nodes. On the other 
hand, the drawback could be the efficiency, since all oth-
er threads are sleeping while the master thread commu-
nicates. In addition, the MPI library must support at least 
the MPI_THREAD_FUNNELED level of thread safety.
2. MPI is called outside the parallel regions of the appli-
cation code, but the MPI communication is done itself by 
several CPUs. The thread parallelization of the MPI 
communication can be done automatically by the MPI li-
brary routines, or explicitly by the application, using a 
full thread-safe MPI library.
In this first category, the non-communicating threads are 

sleeping (or executing another application, if non-dedicated 
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nodes are used). This problem of idling CPUs is solved in 
the next category of MPI/OpenMP methods.

The second category corresponds to overlapping com-
munication and computation. Here, while the communica-
tion is done by the master thread (or a few threads), all other 
non-communicating threads are executing application code. 
As in the previous case, we can find two approaches:

1. Only the master thread calls MPI routines, i.e., all 
communications are funneled to the master thread.
2. Each thread handles its own communication needs, or 
the communication is funneled to more than one thread.
The main problem of this second category is that the ap-

plication must be splitted into code that can run without 
access to the non-local data, and code that needs such 
access, which is very complicated. In addition, using this 
method, we lose the major OpenMP advantage because the 
communication/computation is done via threads rank (the 
thread ID in OpenMP). Therefore, we cannot use workshar-
ing directives. Finally, the communication load of the 
threads is inherently unbalanced. To tackle this last problem, 
we can use load balancing strategies like fixed reservation or 
adaptive balancing [98]. 

Once the different strategies to develop a hybrid applica-
tion are known, the ideal situation is to build it, using one of 
the previous methods, from scratch. Nevertheless, this is not 
always possible. Sometimes, it is necessary to build the 
application from previous MPI or OpenMP code. Here, in 
the “retrofit” process leading from the initial to the hybrid 
code, several issues can be taken into account [99]: 
- Retrofit MPI applications with OpenMP. This is the ea-

siest “retrofit” option because the program state syn-
chronization is already explicitly handled. The benefits 
depend on the amount of work that can be parallelized 
with OpenMP (usually loop-level parallelization). In ad-
dition, this kind of “retrofit” is beneficial for communi-
cation bound applications, since it reduces the number of 
MPI processes needing to communicate. However, CPU 
processor use on each node becomes an issue to study 
during the “retrofit” process.

- Retrofit OpenMP applications with MPI. This case is not 
as straightforward as the previous one since the program 
state must be explicitly handled with MPI. This approach
requires careful consideration of how each process will 
communicate with the others. Sometimes, it may require 
a complete redesign of the parallelization. Nevertheless, 
a successful “retrofit” usually yields greater improve-
ments in performance and scaling. 

 
An advantage of the MPI+OpenMP approach is that 

MPI one-sided communications decouples data transfer 
from synchronization, whereas multithreading relaxes the 
SPMD design pattern usually applied. We have found many 
applications in which this hybrid programming model pro-
vides clear performance improvement. For example, Bova et 
al. [100] have developed mixed mode versions of five sepa-
rate codes: the general-purpose wave prediction application 
CGWAVE, the molecular electronic structure package GA-
MESS, a Linear algebra application, a thin-layer Navier-
Stokes solver (TLNS3D), and the seismic processing 
benchmark SPECseis96. Bush et al. [101] have developed 

mixed MPI / OpenMP versions of some kernel algorithms 
and larger applications. Successful examples of applications 
can also be found for coastal wave analysis [102], atmos-
pheric modeling [103], iterative solvers for finite-element 
methods [104], and performance simulations of an 
MPI/OpenMP code for the N-body problem under the 
HeSSE environment [105].  

Nevertheless, as commented before, this model is not 
always the most efficient alternative. For example, Cappello 
et al. [106], Duthie et al. [107], Smith [108], Henty [109], 
and Chow et al. [110] all show in several examples that the 
pure MPI codes outperform their mixed counterparts despite
the underlying architecture.

66.3 Combining CUDA and Pthreads
This is an easy way to support multi-GPU parallelism. Thus, 
using this model, one CPU thread is assigned to each GPU. 
Therefore, each device has its own context on the host. An 
example of this programming model can be found in [111]
applied to the Navier-Stokes solver. The main problem is 
that the programmer has to split the code to provide the 
same amount of work to each GPU.

Other way to apply this model is taking advantage of 
multicore CPUs. For example, in [112] Pthreads are used to 
preprocess some data that later are sent to the GPU to be 
fully processed. In this way, CPU and GPU computations 
are overlapped.

6.4 Combining CUDA and OpenMP
As in the previous case, OpenMP can be used to optimize 
the generation of input data and their transference toward a
GPU. The problem is that CUDA cannot share the CPU and 
GPU memories. That means that the GPU needs to receive 
input data from the CPU to implement operations. Thus, to 
take advantage of the efficiency of the GPU, it is essential to 
minimize data transmission between the CPU and the GPU. 
To tackle this problem, the authors in [113] have used 
OpenMP, which allows the CPU to generate as much data as 
possible (data preprocessing). Other example is found in 
[114], where this model is used to implement a parallel cloth 
simulation, which offers higher animation frame rates. On 
the other hand, this model can be implemented using the 
CPU to postprocess the results obtained in the GPU. This 
has been applied in [115] to scene recognition issues.

Finally, as in the Pthreads case, this model could be used 
to support multi-GPU parallelism. However, we have not 
found any published work implementing this approach.

6.5 Combining CUDA and MPI 
This model is useful for parallelizing programs in GPU 
clusters. Here, the programming environment and the hard-
ware structure of cluster nodes are very different from tradi-
tional ones, because of the heterogeneous architecture model 
based on the CPU and the GPU. Unlike traditional cluster 
systems, this model separates process control tasks from 
data computing tasks. In particular, MPI is used to control 
the application, the communication between nodes, the data 
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schedule, and the interaction with the CPU. Meanwhile, 
CUDA is used to compute the tasks in the GPU [116], [117]. 

In the same way, this model can be applied to GPU clus-
ters where each node has several GPUs. The key concept is 
similar: one MPI process is started per GPU. Since we must 
ensure that each process has assigned a unique GPU iden-
tifier, an initial mapping of hosts to GPUs is performed. A 
master process gathers all the host names, assigns GPU 
identifiers to each host, such that no process on the same 
host has the same identifier, and scatters the result back 
[118], [119]. As an example, in [119] the authors optimize its 
incompressible flow solver code using this model.

This programming model is not the ideal approach for 
all parallel applications. There are instances where it deliv-
ers poor performance. In [120] Karunadasa and Ranasinghe 
applied this model to Strassen [121] and Conjugate Gradient 
[122] algorithms with different results. In the first algorithm 
the approach has shown to work fine, whereas in the second 
it was less effective. The authors provide two considerations 
to make before trying to improve the performance of an 
application using CUDA+MPI [120]: 
- First: Does the algorithm have two levels of parallelism? 

Only if the algorithm has a second level of parallelism 
the second consideration (see next point) should be taken 
into account.

- Second: Does the second level of parallelism have some 
compute intensive part that can be processed in a GPU? 
If it has not a considerable amount of work that can be 
easily handled by the GPU, then there will not be many
performance increases by executing that second level pa-
rallel component with CUDA.

From the previous subsections a clear conclusion arises: 
there is no general solution for hybrid parallelization even 
when we consider the same architecture. In practice, the best 
solution depends on the characteristics of each application. 
Despite that, the hybrid models offer an attractive way to 
harness the possibilities provided by current architectures.

77 LANGUAGES WITH PARALLEL SUPPORT

The previous sections have considered parallel programming 
models. However, in the parallel programming field special 
interest is due to languages with direct parallel support. 
These languages are usually, but not always, HPC oriented. 
From the parallel programming standpoint these languages 
fall under the umbrella of the shared or distributed memory 
models. From the plethora of proposed languages, we con-
sider here some representative examples of approaches not 
yet considered in the previous sections. 

7.1 Java
Java is one of the most popular languages for common ap-
plications, but it is also a parallel programming language. In 
fact, Java was designed to be multithreaded [123]. This 
design allows the Java Virtual Machine (JVM) to take ad-
vantage of multicore systems for critical tasks such as Just-
In-Time (JIT) compilation or Garbage Collection. In [124], 
the authors study the performance of Java using different 
benchmarks. They get an overall good performance for basic 

arithmetic operations. With respect to intensive computa-
tions, their implementation of the Java NAS Parallel 
Benchmark [125] shows a similar performance that the For-
tran/MPI one. However, the scalability is an issue when 
performing intensive communications, but this problem can 
be tackled using optimized network layers [126]. 

Java includes type safety and integrated support for paral-
lel and distributed programming. Java provides Remote 
Method Invocation (RMI) for transparent communication 
between Java Virtual Machines (JVMs).

With respect to HPC, Java has the appeal of high level 
constructs, memory management, and portability of applica-
tions. In addition, current Java implementations, thanks to 
Just-In-Time compilers, are only about a 30% slower than 
native C or Fortran applications [127], [128]. This is a great 
improvement over the initial Java performance, when pure 
interpretation of bytecode was used. This performance was 
estimated to be worse than that of Fortran by a factor of four 
[129]. Therefore, over the years, Java is becoming more and 
more interesting for HPC applications. Thus, is not a sur-
prise that the message passing model was proposed for use 
under Java. To uniformize criteria, in 1998 the Message-
Passing Working Group of the Java Grande Forum [130]
was formed. This working group came up with an initial 
draft for a Java message passing API specification. The first 
implementation based on these guidelines was mpiJava 
[131]. mpiJava was a set of Java Native Interface (JNI) 
wrappers to native MPI packages. mpiJava paved the way 
for other implementations such as the open source MPJ 
Express [132] library. MPJ Express is a message passing 
library for Java suitable for use on computer clusters and 
multicore CPUs [133]. Reference [132] presents an interest-
ing comparison of Java and MPJ Express vs. C and MPI by 
considering the Gadget-2 massively parallel structure forma-
tion code used in cosmology. The results show that the Java 
version is comparable to the C one.

7.2 High Performance Fortran (HPF)
High Performance Fortran (HPF) [134] is an extension of 
Fortran 90 with constructs supporting parallel computing. 
HPF is maintained by the High Performance Fortran Forum 
(HPFF) [134]. The first version was published in 1993. The 
language was designed to support the data parallel pro-
gramming pattern. In this pattern, a single program controls 
the distribution of data across all processors. It also controls 
the operations on these data. A primary design goal of HPF 
was that it would enable top performance on parallel com-
puter architectures without sacrificing portability [135]. 

HPF represents a simple way to work in distributed 
memory environments. The language syntax presents a 
global memory space to the programmer, eliminating the 
necessity of understanding message passing issues [136]. 
Examples of application to typical problems such as heat 
distribution, the N-Body problems or the LU decomposition 
can be found in [136]. 

7.3 Cilk
Cilk is a multithreaded language [137]. Thus, it implements 
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a shared memory approach suitable for current multicore 
CPUs. Cilk is C based and was developed at MIT in 1994. 
The philosophy behind Cilk is that the programmer should 
concentrate on structuring the program to expose parallelism
and exploit locality. Thus, the Cilk runtime system [137]
takes care of details like load balancing, paging, and com-
munication protocols. The Cilk scheduler uses a “work steal-
ing” policy to divide procedure execution efficiently among 
multiple processors. Thus, idle processors can perform work 
in benefit of busy ones. Unlike other multithreaded languag-
es, Cilk is algorithmic. This means that the runtime system 
guarantees efficient and predictable performance [138]. A
Cilk proprietary extension to C++ is distributed by Intel as 
Cilk Plus [139].  

77.4 Z-level Programming Language (ZPL)
ZPL, originally called Orca C, was developed between 1993 
and 1995 in the University of Washington, and was released 
to the public in 1997 [140]. ZPL is an implicitly parallel 
programming language [141]. This means that all the in-
structions to implement and manage parallelism are inserted 
by the compiler. ZPL is a parallel array language designed 
for high performance scientific and engineering computa-
tions. ZPL uses a machine model, the Candidate Type Archi-
tecture (CTA), which abstracts Multiple Instruction Multiple 
Data (MIMD) parallel computers [141]. One of the goals of 
ZPL is performance portability, understood as consistent 
high performance across MIMD parallel platforms [141]. 
The cornerstone for ZPL’s performance portability is the 
introduction of an explicit performance model [141]. 

ZPL is an extremely interesting approach. There are un-
deniable advantages in a language designed from the ground 
up to provide an abstract MIMD machine model and a port-
able performance model. Thus, for instance, performance is 
independent of the compiler and of the machine. However, 
the last ZPL available version is an alpha version dating
back to 2000 [142]. In addition, although there are in the 
literature interesting examples of its use [143], it seems that 
the scientific and engineering community has not paid
enough attention to ZPL. ZPL has had a great influence in 
the development of Chapel since part of the development 
team also participates in Chapel’s developing.

7.5 Erlang
Erlang is a general-purpose, message passing concurrent 
functional programming language and runtime environment. 
Erlang started life in the telecommunications industry at 
Ericsson, where its developers sought to create a language 
for building telecommunications switches. In 1998, Erlang 
became open source software [144]. Erlang has built-in 
support for concurrency, distribution and fault tolerance. 
Erlang's concurrency primitives provide more than just a fast 
way to create threads. They also enable parts of an applica-
tion to monitor other parts - even if they are running on 
separate hosts across the network - and restart those other 
parts if they fail. Erlang's libraries and frameworks take 
advantage of these capabilities to let developers build sys-
tems with extreme availability and reliability [145]. 

Due to its design orientation, Erlang is very efficient for 
developing distributed, reliable, soft real-time concurrent 
systems such as Telecommunication systems or Servers for 
Internet applications. However, it is not well suited for ap-
plications where performance is a prime requirement, such 
as HPC systems. 

7.6 Glasgow Parallel Haskell
Glasgow parallel Haskell (GpH) is a concurrent version of 
the functional Haskell language developed in the Glasgow 
University [146]. GpH applies a semi-explicit deterministic 
parallel programming model [147]. Here, the semantics of 
the program remains completely deterministic, and the pro-
grammers are not required to identify threads, communica-
tion, or synchronization. They merely annotate subcomputa-
tions that might be evaluated in parallel, leaving the choice 
of whether to actually do so to the runtime system. These so-
called sparks are created and scheduled dynamically, and 
their grain size varies widely.

GpH supports execution on clusters of computers. At 
present, the Glasgow Haskell compiler supports GpH lan-
guage constructs on shared memory machines.

8 DISTRIBUTED PROGRAMMING

No survey of the parallel programming landscape can be 
complete without considering distributed programming. 
Here, we have individual computing units interconnected by 
some network. A detailed presentation of the distributed 
systems topic can be found in [148]. According to the classi-
fication proposed in [148] what we can call “Distributed 
Computing Systems” are those specifically oriented to HPC. 
Examples are computer clusters and Grids of computers. 
The parallel programming models useful in these systems 
have been considered in the previous sections of this review. 
Here, we will consider Grid computing. In addition, the 
present section focuses in the colloquial meaning given to 
Distributed Systems. That is, the Information Distributed 
Systems considered in [148]. These systems are mainly, but 
not exclusively, enterprise-oriented, with an emphasis on 
interoperability among networked applications. Different 
programming models, architectures and tools coexist here. 
This leads to a somewhat confusing landscape. In this work, 
we will use a chronological order to present the most repre-
sentative components of this fauna.

8.1 Grid Computing
The Grid concept was first presented by Foster and Kessel-
man in 1998 [149].  A computational Grid is defined as a 
hardware and software infrastructure providing dependable, 
consistent, and pervasive access to resources among differ-
ent administrative domains [149]. Therefore, grid computing 
is a distributed computing model that permits the integration 
of arbitrary computational resources over the Internet. An 
updated and detailed presentation of Grid computing can be 
found in [150]. Grid computing relies on a middleware layer 
to achieve its goals. Different Grid middlewares do exist, 
like gLite [151] produced in the EGEE (Enabling Grids for 
E-sciencE) European project [152]. However, the de facto
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standard is the Globus toolkit [30], now in its 4 version. Like
any Grid middleware, Globus addresses four key elements: 
Grid security, data management, resource allocation and 
information services [150], [30]. 

The perspective of harnessing the computational power 
of different machines makes the Grid an interesting option 
for HPC. However, the heterogeneous nature of the re-
sources, and the bandwidths and latencies involved in the 
Internet, prevents the treatment of concurrent problems 
when communication among processes is important. An 
ideal case to be run on the Grid is that of parameter sweep 
problems, where several communication independent 
processes are run simultaneously [153]. These embarrassing-
ly parallel problems can be tackled under a master/worker 
parallel programming pattern [10]. The parameter sweep 
model finds increasing applications in different scientific 
areas for example: Bioinformatics [154], High-Energy Phys-
ics [155], or Molecular Science [153]. 

88.2 CORBA
In the beginning it was CORBA, we could say. CORBA 
arises in the early 1990s as an attempt to permit interopera-
bility among different applications running on distributed 
systems. CORBA is a standard defined by the Object Man-
agement Group [156]. The first really operative version was 
the 2.0, released in 1997. CORBA 2.0 provided a standar-
dized protocol and a C++ mapping. The last CORBA ver-
sion is 3.1, released in 2008.

The CORBA specification provides a stable model for 
distributed object-oriented systems [148]. At the core of this 
model lays the concept of Remote Procedure Call (RPC) 
introduced in 1984 by Birrel and Nelson [157]. RPC is as 
simple as allowing programs to call procedures in another 
machine. CORBA applications are composed of objects-
components with well defined interfaces that describe the 
services they provide to other objects in the system. Applica-
tions complying with the CORBA standard are abstracted 
from underlying languages, operating systems, networking 
protocols and transports. Instead, they rely on object request 
brokers to provide a fast and flexible communication and 
object activation [158]. CORBA uses an interface definition 
language (IDL) to specify the public interfaces that the ob-
jects present to the outside world. CORBA then specifies a 
"mapping" from the IDL to a specific implementation lan-
guage like C++ or Java. Standard mappings exist for Ada, C, 
C++, Lisp, Smalltalk, Java, COBOL, PL/I and Python.

CORBA has played a major role in the distributed pro-
gramming field. However, it has been somewhat relegated 
due to the complexity of its API, and to the lack of security, 
of versioning features, and of threads support. For a more 
detailed discussion, see [159]. CORBA is used at present to 
tie together components within corporate networks and for 
developing real-time and embedded systems [159], [160], 
[161]. In this last field CORBA is in widespread use.

8.3 DCOM
The Distributed Component Object Model (DCOM) is the 
distributed version of Microsoft’s Component Object Model 

[162]. DCOM was intended as a Microsoft alternative to 
CORBA. As CORBA, DCOM is object-based and relies in 
the use of RPC calls. DCOM was originally a proprietary 
development for Windows. For these reasons it received 
little acceptance. Now, there is an open systems implementa-
tion of DCOM, extended to UNIX, called COMsource 
[163]. Microsoft finally dropped DCOM for the .NET 
framework. For a comparison of DCOM and CORBA see 
[164]. 

8.4 Web Services
While CORBA was being introduced in the late 1990s, the 
web was growing and the first e-commerce applications 
were developed. The first approach for these systems was a 
client-server model where the client side was a web browser 
that offers an interface to the user [148], [165]. However, the 
need for applications that offer services to other applications 
became soon apparent. In this context, the term Web service 
was coined [148], [165]. Web services are distributed soft-
ware components that provide information to applications, 
rather than to humans, using an application-oriented inter-
face. Web services are a distributed middleware technology 
using a simple XML-based protocol to allow applications to 
exchange data across the Web. Services are described in 
terms of the messages accepted and generated. Users of such 
services do not need to know anything about the details of 
the implementation [165]. They only need to be able to send 
and receive messages. The information is structured using 
XML. Thus, it can be parsed and processed easily by auto-
matic tools [165]. Key to Web services are the Simple Ob-
ject Access Protocol (SOAP), the Web Services Description 
Language (WSDL) and the Universal Description, Discov-
ery and Integration standard (UDDI).

SOAP is a lightweight protocol based on XML for Web 
services to exchange messages over the Web [166]. Web 
services support SOAP as communication protocol over 
either HTTP or HTTPS. The SOAP specification is main-
tained by the XML Protocol Working Group of the World 
Wide Web Consortium (W3C) [167]. 

WSDL is a specification (maintained by the W3C [168]) 
defining how to describe web services using a common 
XML grammar [169]. Therefore, WSDL represents a corner-
stone of the Web service architecture, since it provides a 
common language for describing services and a platform for 
automatically integrating those services [169]. 

UDDI, on the other hand, establishes the layout of a data-
base containing service descriptions that will allow Web 
service clients to browse for relevant services. UDDI is an 
open industry initiative, sponsored by the Organization for 
the Advancement of Structured Information Standards (OA-
SIS) [170]. UDDI provides a standardized service registry 
format. This allows having a directory service storing ser-
vice descriptions. This directory permits Web service clients 
to browse for relevant services automatically. 

When a Web service is invoked, the SOAP request is sent 
over the Internet until it reaches the server holding the ser-
vice. The server receives and processes the SOAP request by 
means of a SOAP engine. This is an application running on 
an appropriate application server. Some of the most popular 
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application servers are GlassFish [171], JBoss [172], Gero-
nimo [173] or Tomcat [174].  

Web services expose public interfaces to the network. 
Within the three-tier systems architecture model [175], the 
business (logic) layer behind the public interfaces can be 
implemented through EJB (Enterprise JavaBeans). EJB is 
the server-side component architecture for the Java Platform
Enterprise Edition (Java EE) [176]. EJB technology enables 
rapid and simplified development of distributed, transaction-
al, secure and portable applications based on Java technolo-
gy (called EJBs). In this context, Web services can be 
thought of as wrappers used by EJBs to invoke external 
services and to allow external services and clients to invoke 
the EJBs. EJBs are the basic building blocks of software 
applications on the J2EE platform, which has been the pre-
ferred choice for many enterprises for building large-scale, 
web-accessed applications.  

The ease with which Web services can be implemented, 
and the ability to access them from any platform, has led to 
their rapid adoption as virtualization agents that provide 
common manageability interfaces to different resources 
[165]. However, Web services are mainly business oriented 
as stated in the classic definition by the UDDI consortium, 
quoted in [165]: “… self-contained, modular business appli-
cations that have open, Internet-oriented, standards-based 
interfaces”. The use of standards based in XML makes the 
communication process between services inappropriate for 
HPC applications. However, Web services are useful in e-
Science environments for defining workflows [177]. A rep-
resentative example is the EMBRACE collection of life-
science web services [178]. For a detailed review of the Web 
services paradigm see [179]. 

A key difference between CORBA and Web services is 
that CORBA provides an object-oriented component archi-
tecture. On the other hand, Web services are message based 
(SOAP does not really deal with objects). Using CORBA the 
coupling among the components of a system is usually high. 
Web services, on the other hand, are loosely coupled entities, 
which can work independently of each other. 

88.5 SOA
Mingled with CORBA and Web services, we find the Ser-
vice-Oriented Architecture (SOA). SOA is an architectural 
pattern stating that computational units (such as system 
modules) should be loosely coupled through their service 
interfaces for delivering the desired functionality. In the 
well-known Erl’s book [180] SOA is defined as: “… a form 
of technology architecture that adheres to the principles of 
service-orientation. When realized through the Web services 
technology platform, SOA establishes the potential to sup-
port and promote these principles throughout the business 
process and automation domains of an enterprise.” The 
services do not have to be Web services, though Web servic-
es currently represent the de facto technology for realizing 
SOA [181]. The most important aspect of SOA is that it 
separates the service implementation from its interface. 
Therefore, the way the service performs the task requested 
by the user is irrelevant. The only requirement is that the 
service sends the response back to the user in an agreed-

upon format [182]. 

8.6 REST
The Representational State Transfer (REST), like SOA, is an 
architectural style. REST was defined by Roy T. Fielding, in 
its doctoral Thesis, as an architectural style for distributed 
hypermedia systems [183]. REST specifies several architec-
tural constraints intended to enhance performance, scalabili-
ty, and resource abstraction within distributed hypermedia 
systems. The first one is the uniform interface constraint. 
That means that all resources must present the same inter-
face to the clients. The second is statelessness. Statelessness 
implies that each request from client to server must contain 
the information necessary to understand the request. Cach-
ing is the third REST architectural constraint. This constraint 
requires that the data within a response to a request be im-
plicitly or explicitly labeled as cacheable or non-cacheable. 
If the response is cacheable, then a client cache can reuse 
that response data for later, equivalent, requests. Caching 
improves performance and scalability. For a detailed presen-
tation of the implications of these constrains, see [184]. 

There is now an active REST vs. SOA debate. Both ap-
proaches have their strengths and weaknesses. The main 
difference between SOA is that REST is resource oriented 
rather than service oriented. For a detailed comparison of 
REST and SOA, see [185]. 

8.7 Ice
In the chronological order used here, the newest arrival in 
the distributed programming arena is the Internet Communi-
cations Engine (Ice). Ice, first released in 2003, is an object 
oriented middleware for the development of distributed 
applications. ICE, developed by ZeroC [186], is dual-
licensed under the GNU GPL and a commercial license. Ice 
provides tools, APIs, and library support for building object-
oriented client-server applications. Ice has support for C++, 
.NET, Java, Python, Objective-C, Ruby, and PHP [186]. For 
a detailed presentation of the Ice middleware see [187]. Ice 
represents a modern alternative to CORBA since it provides 
an object model simpler and more powerful. This is 
achieved by getting rid of inefficiencies, and by providing 
new features such as user datagram protocol (UDP) support, 
asynchronous method dispatch, built-in security, automatic 
object persistence, and interface aggregation [188]. 

The distributed programming model presents serious 
drawbacks for HPC applications. These are the existence of 
limited bandwidths and large latencies among the computers 
in the network. The amount of communication in HPC ap-
plications makes these factors critical. Therefore, HPC ap-
plications yield poor performance and do not scale properly 
in actual heterogeneous and geographically disperse envi-
ronments. However, as seen before, embarrassingly parallel 
problems can be efficiently tackled in distributed environ-
ments. This is due to the lack of communication among the 
individual processes involved in these problems. In fact, the 
key factor is the computing to communication ratio.
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99 CONCLUSIONS

This work reviews the current parallel programming land-
scape. From the study a fact is clear: since the switch, 
around 2003, of the microprocessor industry to the multicore 
model, and the introduction of GPGPU, parallelism has 
become a key player in the software arena. It would be de-
sirable that this trend would be clearly reflected in computer 
science curricula. 

The increasing relevance of parallelism in the computa-
tional field can be illustrated by considering its effect on the 
computing literature over the last decade. Thus, Fig. 2 
represents the number of hits in the Scopus database [189]
for some significant keywords: MPI, OpenMP, CUDA, and 
OpenCL. We observe that MPI, i.e., the distributed memory 
model, takes the lion’s share, with a huge increase in relev-
ance in the last decade. This can be attributed to the afforda-
bility of computer clusters as HPC systems, and to the re-
newed interest in parallelism after the concurrent revolution. 
In fact, the distributed memory parallel programming ap-
proach is the most popular one. Therefore, the MPI library 
has been the de facto standard in the HPC field for the last 
two decades. Fig. 2 also shows that OpenMP exhibits a slow 
but continuous increasing trend since 2003. Thus, a conse-
quence of the current widespread use of multicore systems is 
a revival of the once almost forgotten shared memory paral-
lel programming model. However, the most significant fact 
observed in Fig. 2 is the exponential growth of CUDA’s 
relevance since its introduction in 2006. The data trend sug-
gests that GPU based systems could, at least, stand on an 
equal footing with computer clusters in the foreseeable fu-
ture. Finally, we also observe a clear growing tendency in 
OpenCL. OpenCL was introduced in 2008, but it seems that 
this approach could have an exponential increase as CUDA 
has. 

The present study also shows that with current multicore 
CPUs, computer clusters can mix distributed memory pro-
gramming, among the cluster nodes, with shared memory 
parallel programming, within the cores of each node. Thus, 
the hybrid parallel programming approach is becoming in-
creasingly popular. Hybrid parallel programming examples 

involving GPUs can also be found in the literature. There-
fore, the hybrid approach offers a way to harness the possi-
bilities of current, and legacy, architectures and systems.

In addition, the easy availability of GPUs on multicore 
systems is providing momentum to a new parallel program-
ming model: heterogeneous programming. This supersedes 
pure GPU programming, allowing several multicore CPUs 
and several GPUs to collaborate.

Among all the different approaches existing for profiting 
from parallel systems those based on open industry stan-
dards are especially interesting. Open standards allow the 
different actors involved in the parallel world to have a 
voice, and contribute to their development. In words of Tim 
Mattson from Intel [190]: “…the core to solving the parallel 
programming challenge is standards”. From this standpoint 
we have MPI for distributed memory and OpenMP for 
shared memory. For the new heterogeneous platforms the 
hole is filled by OpenCL. The open standards approach 
seems to be the way to spread and uniformize the use of 
parallel programming models.
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