
IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 1

A Survey of Parallel Programming Models
and Tools in the Multi and Many-core Era

J. Diaz, C. Muñoz-Caro and A. Niño

AAbstract— In this work, we present a survey of the different parallel programming models and tools available today with special
consideration to their suitability for high performance computing. Thus, we review the shared and distributed memory
approaches, as well as the current heterogeneous parallel programming model. In addition, we analyze how the partitioned
global address space (PGAS) and hybrid parallel programming models are used to combine the advantages of shared and
distributed memory systems. The work is completed by considering languages with specific parallel support and the distributed
programming paradigm. In all cases, we present characteristics, strengths and weaknesses. The study shows that the
availability of multicore CPUs has given new impulse to the shared memory parallel programming approach. In addition, we find
that hybrid parallel programming is the current way of harnessing the capabilities of computer clusters with multicore nodes. On
the other hand, heterogeneous programming is found to be an increasingly popular paradigm, as a consequence of the
availability of multicore CPUs+GPUs systems. The use of open industry standards like OpenMP, MPI or OpenCL, as opposed to
proprietary solutions, seems to be the way to uniformize and extend the use of parallel programming models.

Index Terms—Parallelism and Concurrency, Distributed programming, Heterogeneous (hybrid) systems.

—————————— ——————————

1 INTRODUCTION

ICROPROCESSORS based on a single processing
unit (CPU) drove performance increases and cost
reductions in computer applications for more than

two decades. However, this process reached a limit around
2003 due to heat dissipation and energy consumption issues
[1]. These problems have limited the increase of CPU clock
frequencies and the number of tasks that can be performed
within each clock period. The solution adopted by processor
developers was to switch to a model where the microproces-
sor has multiple processing units known as cores [2]. Nowa-
days, we can speak of two approaches [2]. The first, multi-
core approach, integrates a few cores (currently between two
and ten) into a single microprocessor, seeking to keep the
execution speed of sequential programs. Actual laptops and
desktops incorporate this kind of processor. The second,
many-core approach uses a large number of cores (currently
as many as several hundred) and is specially oriented to the
execution throughput of parallel programs. This approach is
exemplified by the Graphical Processing Units (GPUs)
available today. Thus, parallel computers are not longer
expensive and elitist devices, but commodity machines we
find everywhere. Clearly, this change of paradigm has had
(and will have) a huge impact on the software developing
community [3].

Most of the software applications are developed follow-
ing the sequential execution model, which is naturally im-
plemented on traditional single-core microprocessors. There-
fore, each new, more efficient, generation of single-core

processors translates into a performance increase of the
available sequential applications. However, the current stal-
ling of clock frequencies prevents further performance im-
provements. In this sense, it has been said that “sequential
programming is dead” [4], [5]. Thus, in the present scenario
we cannot rely on more efficient cores to improve perfor-
mance but in the appropriate coordinate use of several cores,
i.e., in concurrency. So, the applications that can benefit
from performance increases with each generation of new
multicore and many-core processors are the parallel ones.
This new interest in parallel program development has been
called the “concurrency revolution” [3]. Therefore, parallel
programming, once almost relegated to the High Perfor-
mance Computing community (HPC), is taken a new star
role on the stage.

Parallel computing can increase the applications perfor-
mance by executing them on multiple processors. Unfortu-
nately, the scaling of application performance has not
matched the scaling of peak speed, and the programming
burden continues to be important. This is particularly prob-
lematic because the vision of seamless scalability needs the
applications to scale automatically with the number of pro-
cessors. However, for this to happen, the applications have
to be programmed to exploit parallelism in the most efficient
way. Thus, the responsibility for achieving the vision of
scalable parallelism falls on the applications developer [6].

In this sense, there are two main approaches to paral-
lelize applications: auto-parallelization and parallel pro-
gramming [7]. They differ in the achievable application
performance and ease of parallelization. In the first case, the
sequential programs are automatically parallelized using ILP
(instruction level parallelism) or parallel compilers. Thus,
the main advantage is that existing applications just need to
be recompiled with a parallel compiler, without modifica-
tions. However, due to the complexity of automatically

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————
J. Diaz is with the Pervasive Technology Institute, Indiana University.
2719 East Tenth Street, Bloomington, IN 47408, USA. E-mail: javi-
diaz@indiana.edu
C. Muñoz-Caro and A. Niño are with the Escuela Superior de Informática,
Universidad de Castilla-La Mancha. Paseo de la Universidad 4. 13004
Ciudad Real, Spain. E-mails: {camelia.munoz; alfonso.nino}@uclm.es

Manuscript received (insert date of submission if desired). Please note that all
acknowledgments should be placed at the end of the paper, before the bibliography.

M

Digital Object Indentifier 10.1109/TPDS.2011.308 1045-9219/11/$26.00 © 2011 IEEE

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

transforming sequential algorithms into parallel ones, the
amount of parallelism reached using this approach is low.
On the other hand, in the parallel programming approach,
the applications are specifically developed to exploit paral-
lelism. Therefore, developing a parallel application involves
the partitioning of the workload into tasks, and the mapping
of the tasks into workers (i.e., the computers where the tasks
will be processed). In general, parallel programming obtains
a higher performance than auto parallelization but at the
expense of more parallelization efforts. Fortunately, there are
some typical kinds of parallelism in computer programs
such as task, data, recursive, and pipelined parallelism [8],
[9], [10]. In addition, much literature is available about the
suitability of algorithms for parallel execution [11], [12] and
about the design of parallel programs [10], [13], [14], [15].
From the design point of view, different patterns for exploit-
ing parallelism have been proposed [8], [10]. A pattern is a
strategy for solving recurring problems in a given field. In
addition, the patterns can be organized as part of a pattern
language, allowing the user to use the patterns to build com-
plex systems. This approach applied to parallel program-
ming is presented in [10]. Here, the pattern language is or-
ganized in four design spaces or phases: finding concurren-
cy, algorithm structure, supporting structures, and imple-
mentation mechanisms. A total of nineteen design patterns
are recognized and organized around the first three phases.
In particular, four patterns corresponding to the supporting
structures phase can be related to the different parallel pro-
gramming models [10]. These are: SPMD (Single Program
Multiple data, where the same program is executed several
times with different data), Master/Worker (where a master
process sets up a pool of worker processes and a bag of
tasks), loop parallelism (where different iterations of one or
more loops are executed concurrently), and fork/join (where
a main process forks off several other processes that execute
concurrently until they finally join in a single process again).

Parallel systems, or architectures, fall into two broad
categories: shared memory and distributed memory [8]. In
shared memory architectures we have a single memory ad-
dress space accessible to all the processors. Shared memory
machines have existed for a long time in the servers and
high-end workstations segment. However, at present, com-
mon desktop machines fall into this category since in multi-
core processors all the cores share the main memory. On the
other hand, in distributed memory architectures there is not
global address space. Each processor owns its own memory.
This is a popular architectural model encountered in net-
worked or distributed environments such as clusters or Grids
of computers. Of course, hybrid shared-distributed memory
systems can be built.

The conventional parallel programming practice in-
volves a pure shared memory model [8], usually using the
OpenMP API [16], in shared memory architectures, or a pure
message passing model [8], using the MPI API [17], on
distributed memory systems. The largest and fastest comput-
ers today employ both shared and distributed memory archi-
tectures. This provides flexibility when tuning the paral-
lelism in the programs to generate maximum efficiency and
an appropriate balance of the computational and communi-
cation loads. In addition, the availability of General Purpose

computation on GPUs (GPGPUs) in actual multicore sys-
tems has lead to the Heterogeneous Parallel Programming
(HPP) model. HPP seeks to harness the capabilities of multi-
core CPUs and many-core GPUs. Accordingly to all theses
hybrid architectures, different parallel programming models
can be mixed in what is called hybrid parallel programming.
A wise implementation of hybrid parallel programs can
generate massive speedups in the otherwise pure MPI or
pure OpenMP implementations [18]. The same can be ap-
plied to hybrid programming involving GPUs and distri-
buted architectures [19], [20].

In this paper, we review the parallel programming mod-
els with especial consideration of their suitability for High
Performance Computing (HPC) applications. In addition, we
consider the associated programming tools. Thus, in Section
2 we present a classification of parallel programming mod-
els in use today. Sections 3 to 8 review the different models
presented in Section 2. Finally, in Section 9 we collect the
conclusions of the work.

22 CLASSIFICATION OF PARALLEL PROGRAMMING
MODELS

Strictly speaking, a parallel programming model is an ab-
straction of the computer system architecture [10]. There-
fore, it is not tied to any specific machine type. However,
there are many possible models for parallel computing be-
cause of the different ways several processors can be put
together to build a parallel system. In addition, separating
the model from its actual implementation is often difficult.
Parallel programming models and its associated implemen-
tations, i.e., the parallel programming environments defined
by Mattson et al. [10], are overwhelming. However, in the
late 1990s two approaches become predominant in the HPC
parallel programming landscape: OpenMP for shared memo-
ry and MPI for distributed memory [10]. This allows us to
define the classical or pure parallel models. In addition, the
new processor architectures, multicore CPUs and many-core
GPUs, have produced heterogeneous parallel programming
models. Also, the simulation of a global memory space in a
distributed environment leads to the Partitioned Global
Address Space (PGAS) model. Finally, the architectures
available today allow definition of hybrid, shared-
distributed memory + GPU, models. The parallel computing
landscape would not be complete without considering the
languages with parallel support and the distributed pro-
gramming model. All these topics are presented in the next
sections.

3 PURE PARALLEL PROGRAMMING MODELS

Here, we consider parallel programming models using a
pure shared or distributed memory approach. As such, we
consider the threads, shared memory OpenMP, and distri-
buted memory message passing models. Table 1 collects the
characteristics of the usual implementations of these models.

3.1 POSIX Threads
In this model, we have several concurrent execution paths
(the threads) that can be controlled independently. A thread

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

J.DIAZ ET AL.: A SURVEY OF PARALLEL PROGRAMMING MODELS AND TOOLS IN THE MULTI AND MANY-CORE ERA 3

is a lightweight process having its own program counter and
execution stack [9]. The model is very flexible, but low
level, and is usually associated to shared memory and oper-
ating systems. In 1995 a standard was released [21]: the
POSIX.1c, Threads extensions (IEEE Std 1003.1c-1995), or
as it is usually called Pthreads.

The Pthreads, or Portable Operating System Interface
(POSIX) Threads, is a set of C programming language types
and procedure calls [7], [22], [23]. Pthreads is implemented
as a header (pthread.h) and a library for creating and mani-
pulating each thread. The Pthreads library provides functions
for creating and destroying threads and for coordinating
thread activities via constructs designed to ensure exclusive
access to selected memory locations (locks and condition
variables). This model is especially appropriate for the
fork/join parallel programming pattern [10].

In the POSIX model, the dynamically allocated heap
memory, and obviously the global variables, is shared by the
threads. This can cause programming difficulties. Often, one
needs a variable that is global to the routines called within a
thread but that is not shared between threads. A set of
Pthreads functions is used to manipulate thread local storage
to address these requirements. Moreover, when multiple
threads access the shared data, programmers have to be
aware of race conditions and deadlocks. To protect critical
section, i.e., the portion of code where only one thread must
reach shared data, Pthreads provides mutex (mutual exclu-
sion) and semaphores [24]. Mutex permits only one thread
to enter a critical section at a time, whereas semaphores
allow several threads to enter a critical section.

In general, Pthreads is not recommended as a general-
purpose parallel program development technology. While it
has its place in specialized situations, and in the hands of
expert programmers, the unstructured nature of Pthreads
constructs makes difficult the development of correct and
maintainable programs. In addition, recall that the number of
threads is not related to the number of processors available.
These characteristics make Pthreads programs not easily
scalable to a large number of processors [6]. For all these
reasons, the explicitly-managed threads model is not well
suited for the development of HPC applications.

33.2 Shared Memory OpenMP
Strictly speaking, this is also a multithreaded model, as the
previous one. However, here we refer to a shared memory
parallel programming model that is task oriented and works
at a higher abstraction level than threads. This model is in
practice inseparable from its practical implementation:
OpenMP.

OpenMP [25] is a shared memory application program-
ming interface (API) whose aim is to ease shared memory
parallel programming. The OpenMP multithreading inter-
face [16] is specifically designed to support HPC programs.
It is also portable across shared memory architectures.
OpenMP differs from Pthreads in several significant ways.
While Pthreads is purely implemented as a library, OpenMP
is implemented as a combination of a set of compiler direc-
tives, pragmas, and a runtime providing both management of
the thread pool and a set of library routines. These directives
instruct the compiler to create threads, perform synchroniza-
tion operations, and manage shared memory. Therefore,
OpenMP does require specialized compiler support to under-
stand and process these directives. At present, an increasing
number of OpenMP versions for Fortran, C, and C++ are
available in free and proprietary compilers, see Appendix 1
in the supplemental material.

In OpenMP the use of threads is highly structured be-
cause it was designed specifically for parallel applications.
In particular, the switch between sequential and parallel
sections of code follows the fork/join model [9]. This is a
block-structured approach for introducing concurrency. A
single thread of control splits into some number of indepen-
dent threads (the fork). When all the threads have completed
the execution of their specified tasks, they resume the se-
quential execution (the join). A fork/join block corresponds
to a parallel region, which is defined using the PARALLEL
and END PARALLEL directives.

The parallel region enables a single task to be replicated
across a set of threads. However, in parallel programs is very
common the distribution of different tasks across a set of
threads, such as parallel iterations over the index set of a
loop. Thus, there is a set of directives enabling each thread
to execute a different task. This procedure is called work-
sharing. Therefore, OpenMP is specially suited for the loop

TABLE 1. PURE PARALLEL PROGRAMMING MODELS IMPLEMENTATIONS

a) https://computing.llnl.gov/tutorials/pthreads; b) http://www.openmp.org; c) http://www.mcs.anl.gov/research/projects/mpi

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

parallel program structure pattern, although the SPMD and
fork/join patterns also benefit from this programming envi-
ronment [10].

OpenMP provides application-oriented synchronization
primitives, which make easier to write parallel programs. By
including these primitives as basic OpenMP operations, it is
possible to generate efficient code more easily than, for
instance, using Pthreads and working in terms of mutex and
condition variables.

In May 2008 the OpenMP 3.0 version was released [26].
The major change in this version was the support for explicit
tasks. Explicit tasks ease the parallelization of applications
where units of work are generated dynamically, as in recur-
sive structures or in while loops. This new characteristic is
very powerful. By supporting while loops and other iterative
control structures, it is possible to handle graph algorithms
and dynamic data structures, for instance.

The characteristics of OpenMP allow for a high abstrac-
tion level, making it well suited for developing HPC appli-
cations in shared memory systems. The pragma directives
make easy to obtain concurrent code from serial code. In
addition, the existence of specific directives eases to paral-
lelize loop-based code. However, the high cost of traditional
multiprocessor machines prevented the widespread use of
OpenMP. Nevertheless, the ubiquitous availability of multi-
core processors has renewed the interest for this parallel
programming model.

33.3 Message Passing
Message Passing is a parallel programming model where
communication between processes is done by interchanging
messages. This is a natural model for a distributed memory
system, where communication cannot be achieved by shar-
ing variables. There are more or less pure realizations of this
model such as ARMCI, which allows a programming ap-
proach between message passing and shared memory.
ARMCI is detailed later in section 5.2.1. However, over
time, a standard has evolved and dominated for this model:
the Message Passing Interface (MPI).

MPI is a specification for message passing operations
[6], [27], [28], [29]. MPI is a library, not a language. It spe-
cifies the names, calling sequences and results of the subrou-
tines or functions to be called from Fortran, C or C++ pro-
grams. Thus, the programs can be compiled with ordinary
compilers but must be linked with the MPI library. MPI is
currently the de facto standard for HPC applications on
distributed architectures. By its nature it favors the SPMD
and, to a lesser extent, the Master/Worker program structure
patterns [10]. Appendix 2 in the supplemental material col-
lects some well-known MPI implementations. It is interest-
ing to note that MPICH-G2 and GridMPI are MPI imple-
mentations for computational Grid environments. Thus, MPI
applications can be run on different nodes of computational
Grids implementing well established middlewares such as
Globus (the de facto standard, see Section 8.1 later) [30].

MPI addresses the message-passing model [6], [27],
[28]. In this model, the processes executed in parallel have
separate memory address spaces. Communication occurs
when part of the address space of one process is copied into

the address space of another process. This operation is coop-
erative and occurs only when the first process executes a
send operation and the second process executes a receive
operation. In MPI, the workload partitioning and task map-
ping have to be done by the programmer, similarly to
Pthreads. Programmers have to manage what tasks are to be
computed by each process. Communication models in MPI
comprise point-to-point, collective, one-sided and parallel
I/O operations. Point-to-point operations such as the
“MPI_Send”/”MPI_Recv” pair facilitate communications
between processes. Collective operations such as
“MPI_Bcast” ease communications involving more than two
processes. Regular MPI send/receive communication uses a
two-sided model. This means that matching operations by
sender and receiver are required. Therefore, some amount of
synchronization is needed to manage the matching of sends
and receives, and the associated buffer space, of messages.
However, starting from MPI- 2 [31], one-sided communica-
tions are possible. Here, no sender-receiver matching is
needed. Thus, one-sided communication decouples data
transfer from synchronization. One-sided communication
allows remote memory access. Three communication calls
are provided: “MPI_Put” (remote write), “MPI_Get” (re-
mote read) and “MPI_Accumulate” (remote update). Finally,
parallel I/O is a major component of MPI-2, providing
access to external devices exploiting data types and commu-
nicators [28].

On the other hand, with Symmetric Multi-Processing
(SMP) machines being commonly available, and multicore
processors becoming the norm, a programming model to be
considered is a mixture of message passing and multithread-
ing. In this model, user programs consist of one or more
MPI processes on each SMP node or multicore processor,
with each MPI process itself comprising multiple threads.
The MPI-2 Standard [31] has clearly defined the interaction
between MPI and user created threads in an MPI program.
This specification was written with the goal of allowing
users to write multithreaded MPI programs easily. Thus,
MPI supports four “levels” of thread safety that a user must
explicitly select:
- MPI THREAD SINGLE. A process has only one thread

of execution.
- MPI THREAD FUNNELED. A process may be multith-

readed, but only the thread that initialized MPI can make
MPI calls.

- MPI THREAD SERIALIZED. A process may be mul-
tithreaded, but only one thread at a time can make MPI
calls.

- MPI THREAD MULTIPLE. A process may be multith-
readed and multiple threads can call MPI functions si-
multaneously.
Reference [31] provides further details about thread

safety. In addition, in [32] the authors analyze and discuss
critical issues of thread-safe MPI implementations.

In summary, MPI is well suited for applications where
portability, both in space (across different systems existing
now) and in time (across generations of computers), is im-
portant. MPI is also an excellent choice for task-parallel
computations and for applications where the data structures
are dynamic, such as unstructured mesh computations.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

J.DIAZ ET AL.: A SURVEY OF PARALLEL PROGRAMMING MODELS AND TOOLS IN THE MULTI AND MANY-CORE ERA 5

Over the last two decades (the computer cluster era),
message passing, and specifically MPI, has become the HPC
standard approach. Thus, most of the current scientific code
allows for parallel execution under the message passing
model. Examples are: the molecular electronic structure
codes NWChem [33] and Gamess [34], or mpiBLAST [35]
the parallel version of the Basic Local Alignment Search
Tool (BLAST) used to find regions of local similarity be-
tween nucleotide or protein sequences. Message passing
(colloquially understood as MPI) is so tied to HPC and
scientific computing that, at present, in many scientific
fields HPC is synonymous of MPI programming.

44 HETEROGENEOUS PARALLEL PROGRAMMING
MODELS

In the beginning of 2001 NVIDIA introduced the first pro-
grammable GPU: GeForce3. Later, in 2003 the Sig-
graph/Eurographics Graphics Hardware workshop, held in
San Diego, showed a shift from graphics to non-graphics
applications of the GPUs [36]. Thus, the GPGPU concept
was born. Today, it is possible to have, in a single system,
one or more host CPUs and one or more GPUs. In this
sense, we can speak of heterogeneous systems. Therefore, a
programming model oriented toward these systems has ap-
peared. The heterogeneous model is foreseeable to become a
mainstream approach due to the microprocessors industry
interest in the development of Accelerated Processing Units
(APUs). An APU integrates the CPU (multicore) and a GPU
on the same die. This design allows for a better data transfer
rate and lower power consumption. AMD Fusion [37] and
Intel Sandy Bridge [38] APUs are examples of this tendency.

In the first CPU+GPU systems, languages as Brook [39]
or Cg [40] were used. However, NVIDIA has popularized
CUDA [41] as the primary model and language to program
their GPUs. More recently, the industry has worked together
on the OpenCL standard [42] as a common model for hete-
rogeneous programming. In addition, different proprietary
solutions, such as Microsoft’s DirectCompute [43] or Intel’s
Array Building Blocks (ArBB) [44], are available. This
section reviews these approaches.

4.1 CUDA
CUDA (Compute Unified Device Architecture) is a parallel
programming model developed by NVIDIA [41]. The CU-
DA project started at 2006 with the first CUDA SDK re-
leased in early 2007. The CUDA model is designed to de-
velop applications scaling transparently with the increasing
number of processor cores provided by the GPUs [1], [45].
CUDA provides a software environment that allows devel-
opers to use C as high-level programming language. In addi-
tion, other languages bindings or application programming
interfaces are supported; see Appendix 3 in the supplemental
material.

For CUDA, a parallel system consists of a host (i.e.,
CPU) and a computation resource or device (i.e., GPU). The
computation of tasks is done in the GPU by a set of threads
running in parallel. The GPU threads architecture consists in
a two-level hierarchy, namely the block and the grid, see
Fig. 1.

The block is a set of tightly coupled threads, each identi-
fied by a thread ID. On the other hand, the grid is a set of
loosely coupled blocks with similar size and dimension.
There is no synchronization at all between the blocks, and an
entire grid is handled by a single GPU. The GPU is orga-
nized as a collection of multiprocessors, with each multipro-
cessor responsible for handling one or more blocks in a grid.
A block is never divided across multiple multiprocessors.
Threads within a block can cooperate by sharing data
through some shared memory, and by synchronizing their
execution to coordinate memory accesses. More detailed
information can be found in [41], [46]. Moreover, there is a
best practices guide that can be useful to programmers [47].
CUDA is well suited for implementing the SPMD parallel
design pattern [10].

Worker management in CUDA is done implicitly. That is,
programmers do not manage thread creations and destruc-
tions. They just need to specify the dimension of the grid
and block required to process a certain task. Workload parti-
tioning and worker mapping in CUDA is done explicitly.
Programmers have to define the workload to be run in paral-
lel by using the function “Global Function” and specifying
the dimension and size of the grid and of each block.

The CUDA memory model is shown in Fig. 1. At the bot-
tom of the figure, we see the global and constant memories.
These are the memories that the host code can write to and
read from. Constant memory allows read-only access by the
device. Inside a block, we have the shared memory and the
registers or local memory. The shared memory can be ac-
cessed by all threads in a block. The registers are indepen-
dent for each thread.

Finally, we would like to mention a recent initiative by
Intel. This initiative is called Knights Ferry [48], [49], and is
being developed under the Intel Many Integrated Core
(MIC) architecture. Knight Ferry is implemented on a PCI
card with 32 x86 cores. The MIC supports a more classical
coherent shared memory parallel programming paradigm
than CUDA. Moreover, it will be programmed using native
C/C++ compilers from Intel.

Fig. 1. CUDA (OpenCL) Architecture and Memory Model

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

44.2 OpenCL
OpenCL (Open Computing Language) [42], [50], [51] is

an open royalty-free standard for general purpose parallel
programming across CPUs, GPUs and other processors. The
first specification of OpenCL, OpenCL 1.0, was finished in
late 2008 by the Khronos Group [42]. Essentially, OpenCL
distinguishes between the devices (usually GPUs or CPUs)
and the host (CPU). The idea behind OpenCL is to write
kernels (functions that execute on OpenCL devices) and
APIs for creating and managing these kernels. The kernels
are compiled for the targeted device in runtime, during the
application execution. This enables the host application to
take advantage of all the computing devices in the system.

The OpenCL operational model can be described as four
interrelated models: the platform, execution, memory, and
programming models. The platform model is viewed from a
hierarchical and abstract perspective. In this model, a host
coordinates execution, transferring data to and from an array
of Compute Devices. Each Compute Device is composed of
an array of Compute Units. Each Compute Unit is composed
of an array of Processing Elements.

Execution of an OpenCL program involves simultaneous
execution of multiple instances of a kernel on one or more
OpenCL devices. A kernel is the basic executable code unit.
It is called work-item and has a unique ID. Work-items can
be organized into work-groups for synchronization and
communication purposes. The different executions of a pro-
gram are queued and controlled by the host application. This
last, sets up the context in which the kernels run, including
memory allocation, data transfer among memory objects,
and creation of command queues used to control the se-
quence in which commands are run. However, the pro-
grammer is responsible for synchronizing any necessary
execution order.

OpenCL defines a multi-level memory model similarly to
CUDA, see Fig. 1. First, we have the Private memory that
can only be used by a single work-item. In an upper level,
we found the Local memory that can be used by all work-
items in a work-group. Next, the constant memory is re-
served for read-only access by work-items of any work-
group in a single compute device. This memory can be writ-
ten and read by the host application, but remains constant
during the execution of a kernel. Finally, we have the global
memory, which is available for reading and writing by all
work-items in all work-groups on the device. Like CUDA,
OpenCL is well suited for implementing the SPMD parallel
design pattern [10].

OpenCL has been designed to be used not only in GPUs
but also in other platforms like multicore CPUs. Thus, it can
support both data parallel [52], and task parallel [53] pro-
gramming patterns [10], which are well suited for GPUs and
CPUs architectures respectively.

OpenCL provides APIs for high-level languages. The
main supported APIs are for C [50] and C++ [54]. However,
there are other language bindings or application program-
ming interfaces supported, see Appendix 4 in the supple-
mental material.

4.3 DirectCompute
DirectCompute is Microsoft’s approach to GPU program-
ming. DirectCompute is part of the Microsoft DirectX APIs
collection [43]. In fact, it is also known as DirectX11 Com-
pute Shader. It was initially released with the DirectX 11
API, but runs on both DirectX 10 and DirectX 11 graphics
processing units. In particular, it was introduced thanks to
the new Shader Model 5 [55] provided in DirectX 11, which
allows computation independently of the graphic pipeline,
therefore suitable for GPGPUs. The main drawback of Di-
rectCompute is that it only works on Windows platforms.

4.4 Array Building Blocks (ArBB)
Intel’s Array Building Blocks (ArBB) provides a generalized
vector-parallel-programming solution for data-intensive
mathematical computation [44], [56], [57]. Users express
computations as operations on arrays and vectors. ArBB
comprises a standard C++ library interface and a powerful
runtime. A just-in-time compiler supplied with the library
translates the operations into target-dependent code, where a
target could be the host CPU or an attached GPU. As run-
time, ArBB uses Intel’s Threading Building Blocks [58],
which contributes to abstract platform details and threading
mechanisms for scalability and performance. Intel’s ArBB
can run data-parallel vector computations on a possibly
heterogeneous system. By design, Intel ArBB prevents pa-
rallel programming bugs such as data races and deadlocks.

Thanks to the GPUs, heterogeneous programming is be-
coming a valuable tool in the HPC arena. As a few exam-
ples, we have applications in linear algebra [59], molecular
dynamics [60], medical imaging [61] or bioinformatics [62].
For excellent surveys of GPUs capabilities and applications
see [63], [64].

5 PARTITIONED GLOBAL ADDRESS SPACE

Shared memory parallel programs are considered easier to
develop than message passing programs. However, message
passing usually achieves better scalability and portability.
This is because shared memory parallel programming mod-
els do not exploit cache data locality effectively. Distributed
Shared Memory (DSM) models try to combine the advan-
tages of both approaches, supporting the notion of shared
memory in a distributed architecture. DSM approaches are
in the arena since the late 1980’s [65]. In DSM models, each
processor sees its own memory operations in the order speci-
fied by its program. This does not automatically protect
processors from seeing each other’s operations (and data)
out of order. This results in a memory consistency problem
that was a key issue in the development of early DSM sys-
tems [65]. The lack of locality awareness enhances the prob-
lem.

The Partitioned Global Address Space (PGAS) memory
model is a DSM approach that implements a locality-aware
paradigm [66]. PGAS provides a global address space, along
with an explicitly Single Program Multiple Data (SPMD)
control model. PGAS implementations typically make the
distinction between local and remote memory references.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

J.DIAZ ET AL.: A SURVEY OF PARALLEL PROGRAMMING MODELS AND TOOLS IN THE MULTI AND MANY-CORE ERA 7

This permits to exploit data locality, which leads to a per-
formance increase on distributed memory hardware [67]. In
the PGAS model, SPMD threads (or processes) share a part
of their address space. In addition, a part of the shared space
is local to each thread or process. Data structures can be
allocated either globally or privately. Global data structures
are distributed across address spaces, typically under the
control of the programmer. Remote global data are accessi-
ble to any thread as simple assignment or dereference opera-
tions. The compiler and runtime are responsible for convert-
ing such operations into messages between processes on a
distributed memory machine. Thus, programs using the
PGAS model can exploit locality by making each thread or
process to work principally with its local data [66], [67].

While programs may require nothing else but communi-
cation through global data structures, most PGAS languages
provide APIs for bulk communication and synchronization.
In this sense, several libraries are being used as PGAS run-
times. Apart from the runtime libraries, there are languages
specifically designed to support the PGAS memory model.
In this context, languages developed under DARPA’s High
Productivity Computing Systems (HPCS) project [68] de-
serve special consideration. Runtimes, PGAS and HPCS
languages are considered in the following subsections.

55.1 PGAS runtimes
Here, we present the most common runtimes available.

5.1.1 Global-Address Space Networking
(GASNet)

GASNet is a language-independent, low-level networking
layer that provides network-independent primitives and
high-performance one-sided communication [69], [70].
GASNet is intended to be used as a compilation target and
as a tool for runtime libraries development. The design is
partitioned into two layers to maximize portability without
sacrificing performance. The lower layer is a general inter-
face called the GASNet core API. This is based on Active
Messages [71], and is implemented directly on top of each
individual network architecture. The upper layer is a wider
and more expressive interface called the GASNet extended
API, which provides high-level operations such as remote
memory access and various collective operations. In the
context of PGAS languages, UPC, Co-Array Fortran, Tita-
nium, and Chapel all use GASNet. These languages are
considered later in the present section.

5.1.2 Aggregate Remote Memory Copy Interface
(ARMCI)

ARMCI [72], [73], [74] is a library offering remote memory
copy functionality. In addition, ARMCI includes a set of
atomic and mutual exclusion operations. ARMCI develop-
ment is driven by the need to support the global-address
space communication model in contexts of regular or irregu-
lar distributed data structures, communication libraries, and
compilers. One-sided put/get operations are allowed. ARM-
CI provides compatibility with message-passing libraries

(primarily MPI), which is necessary for applications that
frequently use hybrid shared-distributed memory program-
ming models. Both blocking and a non-blocking APIs are
needed. The non-blocking API can be used by some applica-
tions to overlap computations and communications.

5.1.3 Kernel Lattice Parallelism (KeLP)
KeLP [75] is a C++ class library built on the standard

Message Passing Interface, MPI. Thus, it acts as a middle-
ware between the application and the low-level communica-
tion substrate. KeLP interoperates with MPI, which eases
low-level performance tuning. KeLP supports a small set of
geometric programming abstractions to represent data struc-
ture and data motion. KeLP’s data orchestration model sepa-
rates the description of communication patterns from the
interpretation of these patterns. The programmer uses intui-
tive geometric constructs to express dependence patterns
among dynamic collections of arrays [76].

5.2 Languages supporting the PGAS model
Here, we consider the most significant ones.

5.2.1 Unified Parallel C (UPC)
Unified Parallel C (UPC) is an extension of the C program-
ming language designed for high performance computing on
large-scale parallel machines [77], [78], [79]. The main
goals are to provide an efficient access to the underlying
machine and to establish a common syntax and semantics
for parallel programming in C. UPC combines the pro-
grammability advantages of the shared memory paradigm,
and the control over data layout and performance of message
passing. The programmer is presented with a single shared,
partitioned address space, where variables may be directly
read and written by any processor, but each variable is phys-
ically associated with a single processor. UPC uses the
SPMD computation pattern [10]. The amount of parallelism
is fixed at the program startup, typically with a single thread
of execution per processor [78], [79].

5.2.2 Co-Array Fortran (CAF)/Fortran 2008
CAF appeared as a small extension of Fortran 95 for parallel
processing [80], [81]. However, the most recent Fortran
standard, Fortran 2008 [82], approved in September 2010,
incorporates coarrays as part of the language definition.

The coarray extension addresses the two fundamental is-
sues of any parallel programming model: work distribution
and data distribution [83]. With respect to work distribution,
the coarray extension adopts the SPMD programming pat-
tern. Thus, a single program is replicated a fixed number of
times. Each replication, called image, has its own set of data
objects. The number of images may be equal to, greater or
less than the number of physical processors. The images
execute mostly asynchronously. Synchronization can be
requested by the programmer through specific statements.
On the other hand, with respect to data distribution, coarrays
allow the programmer to specify the relationship among
memory images. This is simple, since coarrays are like ordi-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

nary variables but have an index in square brackets for
access between images. In this way, references without
square brackets correspond to local data, while a square
bracketed reference involves a communication between
images.

Due to its novelty and lack of compiler support, Fortran
2008 has not yet made its entrance in the HPC world.

55.2.3 Titanium
Titanium is a language and system for high-performance
parallel scientific computing. Titanium uses Java as its base,
but it is not a strict extension of it. The main additions to
Java are immutable classes, multidimensional arrays, an
explicitly parallel SPMD pattern of computation with a
global address space, and zone-based memory management
[84], [85]. An important feature is that Titanium programs
can run unmodified on uniprocessors, shared memory ma-
chines and distributed memory machines. Nonetheless, per-
formance tuning may be necessary to arrange an applica-
tion's data structures for distributed memory.

The development team is working on the design of pro-
gram analysis techniques and optimizing transformations for
Titanium programs. A compiler and a runtime system ex-
ploiting these techniques are also being considered [84]. The
compiler optimizes the code and translates Titanium into C.
Then, it is compiled to native binaries by a C compiler and
linked to the Titanium runtime libraries (there is no Java
Virtual Machine).

5.3 High Productivity Computing Systems (HPCS)
Languages

5.3.1 X10
X10 is a Java-derived, type-safe, parallel object-oriented
language developed in the IBM PERCS project [86] as part
of the DARPA program on High Productivity Computing
Systems (HPCS) [68]. The fundamental goal of X10 is to
enable scalable, high-performance, high-productivity trans-
formational programming for high-end computers. X10
introduces a flexible treatment of concurrency, distribution
and locality, within an integrated type system. It extends the
PGAS model to the globally asynchronous, locally syn-
chronous (GALS) model, originally developed in hardware
and in embedded software research [87]. Locality is ma-
naged explicitly using places, computational units with local
shared memory. A program runs over a set of places. Each
place can host data or run activities. An activity is a
lightweight thread that can run on its place, or (explicitly or
implicitly) asynchronously update memory, in other places
[86], [88]. For synchronization, X10 uses “clocks”, which
are a generalization of barriers. Clocks permit activities to
synchronize repeatedly. They provide a structured, distri-
buted, and determinate form of coordination.

5.3.2 Chapel
Chapel [89] is a parallel programming language developed
by Cray Inc. as part of DARPA’s HPCS program [68]. Cha-

pel is a portable language designed to improve the pro-
grammability of large-scale parallel computers, while
matching or beating the performance and portability of cur-
rent programming models like MPI. Chapel supports a mul-
tithreaded execution model via high-level abstractions for
data parallelism, task parallelism, concurrency, and nested
parallelism. Chapel also includes locality-awareness, which
provides distribution of shared data structures without re-
quiring a fragmentation of control structure. It also supports
code reuse and rapid prototyping via object-oriented design
and features for generic programming [88], [90].

5.3.3 Fortress
Fortress [91] is a new programming language designed by
SUN Microsystems for HPC with high programmability.
This language is also part of DARPA’s HPCS program [68].
At present, Fortress is an open-source project. The name
“Fortress” is derived from the intent to produce a “secure
Fortran”, i.e., a language for HPC providing abstraction and
type safety according to modern programming language
principles. However, this is a completely new language in
which all aspects of the design have been rethought from the
ground up. As a result, it supports features such as transac-
tions, specification of locality, and implicit parallel computa-
tion, as integral features built into the core of the language.
It has a novel type system to integrate functional and object-
oriented programming better. Thus, it supports mathematical
notation and static checking of properties, such as physical
units and dimensions, static type checking of multidimen-
sional arrays and matrices, and definitions of domain-
specific language syntax in libraries. Moreover, Fortress has
been designed with the intent to be a "growable" language,
gracefully supporting the addition of future language fea-
tures [88], [92].

Despite its undeniable advantages, PGAS is not a model
suitable for general environments. In fact, two drawbacks
make its adoption outside the HPC niche difficult. First, the
PGAS model implicitly assumes that all processes run on
similar hardware. Second, the PGAS model does not support
dynamically spawning multiple activities. This makes diffi-
cult to handle many non-HPC/non-data-parallel applications,
like those that require run-time dynamic load-balancing. For
that reason, an extension called the Asynchronous Parti-
tioned Global Address Space (APGAS) has been proposed
[67].

6 HYBRID PROGRAMMING

Combining the shared memory and distributed memory
programming models is an old idea [93]. The goal is to ex-
ploit the strengths of both models: the efficiency, memory
savings and ease of programming of the shared memory
model with the scalability of the distributed memory one. In
fact, this is the ultimate target of the PGAS model. However,
rather than developing new runtimes or languages, we can
rely in mixing the already available programming models
and tools. This approach is known as hybrid (parallel) pro-
gramming. This programming model is a modern software
trend for the current hybrid hardware architectures. The

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

J.DIAZ ET AL.: A SURVEY OF PARALLEL PROGRAMMING MODELS AND TOOLS IN THE MULTI AND MANY-CORE ERA 9

basic idea is to use message passing (usually MPI) across
the distributed nodes and shared memory (usually OpenMP
or even Pthreads) within a node. Hybrid programming can
also involve the use of GPUs as source of computing power.
Typically, CUDA is used here, although other GPU pro-
gramming approaches, such as OpenCL, could be used.
However, since OpenCL directly supports multi-GPU and
GPU+CPU programming its use is not specially extended in
the hybrid programming field.

Along this section, we will present the different hybrid
approaches.

66.1 Combining Pthreads and MPI
Combining Pthreads and MPI we could take full advantage
of the shared memory available on individual multicore
cluster nodes. The idea is to use Pthreads to extend MPI,
improving the speed and efficiency of the program. In this
way, Pthreads is used to generate concurrent tasks to be
executed on a single processor with the results gathered
using shared memory. In addition, MPI permits the commu-
nication between nodes, allowing working with the SMP
cluster as a whole.

We have found several examples of this hybrid pro-
gramming model. In [94], the authors used it to develop a
parallel file compression program. Other example is found
in [95], where this model is used for discovering bounded
prime numbers. A last example is found in [96], where this
programming model is used to develop a parallel version of
the RAxML code for phylogenetic studies. However, the use
of this model is not widely extended due to the drawbacks
that involve programming with Pthreads, see Section 3.1.

6.2 Combining MPI and OpenMP
The rationale of hybrid MPI/OpenMP programming is to
take advantage of the features of both programming models.
Thus, it mixes the explicit decomposition and task place-
ment of MPI with the simple and fine-grain parallelization
of OpenMP. This model likely represents the most wide-
spread use of mixed programming on SMP clusters. The
reasons are its portability and the fact that MPI and OpenMP
are industry standards. However, it is not clear that this pro-
gramming model will always be the most effective mechan-
ism. So, it cannot be regarded as ideal for all codes. In prac-
tice, serious consideration must be given to the nature of the
codes before embarking on a mixed mode implementation.
Considerable work has gone into studying this hybrid model
[97], [98], [99]. Here, we have collected some reasons justi-
fying to combine MPI and OpenMP:
- The programming model matches the current hardware

trend (multicore and multiprocessor machines).
- Some applications clearly expose two levels of paral-

lelism: coarse-grained (suitable for MPI), and fine-
grained (best suited for OpenMP).

- There are situations in which the application require-
ments or system restrictions may limit the number of
MPI processes (scalability problems). Thus, OpenMP
can offer an additional amount of parallelism.

- Some applications show an unbalanced workload at the

MPI level. OpenMP can be used to address this issue by
assigning a different number of threads to each MPI
process.

- OpenMP avoids the extra communication overhead with-
in computer nodes induced by MPI. Thus, the memory
latency and data movement within a node is reduced be-
cause it is possible to synchronize on memory instead of
using synchronization barriers.

Nevertheless, there are also reasons that make the use of
this programming model inefficient:
- Introducing OpenMP into an existing MPI code also

means introducing the drawbacks of OpenMP such as:
o Limitations when controlling work distribution and

synchronization.
o Overhead introduced by threads creation and syn-

chronization.
o Dependence on the quality of the compiler and the

runtime support for OpenMP.
- Shared memory issues (for instance in ccNUMA archi-

tectures).
- The interaction of MPI and OpenMP runtime libraries

may have negative side effects on the program’s perfor-
mance.

- Some applications naturally expose only one level of
parallelism, and there may be no benefit in introducing a
hierarchical parallelism pattern.

Most of the hybrid MPI/OpenMP code is based on a hie-

rarchical model, which makes possible to exploit large and
medium-grain parallelism at the MPI level, and fine-grain
parallelism at the OpenMP level. Thus, at high level, the
program is explicitly structured as several MPI tasks, whose
sequential code is enriched with OpenMP directives to add
multi-threading features taking advantage of the presence of
shared memory. This programming model can be imple-
mented in different ways depending on the overlap between
communication and computation [98]. In particular, there are
two main categories: no overlapping communica-
tion/computation and overlapping communica-
tion/computation. In the first one, there are no MPI calls
overlapping with other application code in other threads.
This category can be implemented in two ways [98]:

1. MPI is called only outside parallel regions and on the
master thread. The advantage of this method is that there
is no message passing inside SMP nodes. Thus, we have
no problem with the topology since the master thread
controls communications between nodes. On the other
hand, the drawback could be the efficiency, since all oth-
er threads are sleeping while the master thread commu-
nicates. In addition, the MPI library must support at least
the MPI_THREAD_FUNNELED level of thread safety.
2. MPI is called outside the parallel regions of the appli-
cation code, but the MPI communication is done itself by
several CPUs. The thread parallelization of the MPI
communication can be done automatically by the MPI li-
brary routines, or explicitly by the application, using a
full thread-safe MPI library.
In this first category, the non-communicating threads are

sleeping (or executing another application, if non-dedicated

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

nodes are used). This problem of idling CPUs is solved in
the next category of MPI/OpenMP methods.

The second category corresponds to overlapping com-
munication and computation. Here, while the communica-
tion is done by the master thread (or a few threads), all other
non-communicating threads are executing application code.
As in the previous case, we can find two approaches:

1. Only the master thread calls MPI routines, i.e., all
communications are funneled to the master thread.
2. Each thread handles its own communication needs, or
the communication is funneled to more than one thread.
The main problem of this second category is that the ap-

plication must be splitted into code that can run without
access to the non-local data, and code that needs such
access, which is very complicated. In addition, using this
method, we lose the major OpenMP advantage because the
communication/computation is done via threads rank (the
thread ID in OpenMP). Therefore, we cannot use workshar-
ing directives. Finally, the communication load of the
threads is inherently unbalanced. To tackle this last problem,
we can use load balancing strategies like fixed reservation or
adaptive balancing [98].

Once the different strategies to develop a hybrid applica-
tion are known, the ideal situation is to build it, using one of
the previous methods, from scratch. Nevertheless, this is not
always possible. Sometimes, it is necessary to build the
application from previous MPI or OpenMP code. Here, in
the “retrofit” process leading from the initial to the hybrid
code, several issues can be taken into account [99]:
- Retrofit MPI applications with OpenMP. This is the ea-

siest “retrofit” option because the program state syn-
chronization is already explicitly handled. The benefits
depend on the amount of work that can be parallelized
with OpenMP (usually loop-level parallelization). In ad-
dition, this kind of “retrofit” is beneficial for communi-
cation bound applications, since it reduces the number of
MPI processes needing to communicate. However, CPU
processor use on each node becomes an issue to study
during the “retrofit” process.

- Retrofit OpenMP applications with MPI. This case is not
as straightforward as the previous one since the program
state must be explicitly handled with MPI. This approach
requires careful consideration of how each process will
communicate with the others. Sometimes, it may require
a complete redesign of the parallelization. Nevertheless,
a successful “retrofit” usually yields greater improve-
ments in performance and scaling.

An advantage of the MPI+OpenMP approach is that

MPI one-sided communications decouples data transfer
from synchronization, whereas multithreading relaxes the
SPMD design pattern usually applied. We have found many
applications in which this hybrid programming model pro-
vides clear performance improvement. For example, Bova et
al. [100] have developed mixed mode versions of five sepa-
rate codes: the general-purpose wave prediction application
CGWAVE, the molecular electronic structure package GA-
MESS, a Linear algebra application, a thin-layer Navier-
Stokes solver (TLNS3D), and the seismic processing
benchmark SPECseis96. Bush et al. [101] have developed

mixed MPI / OpenMP versions of some kernel algorithms
and larger applications. Successful examples of applications
can also be found for coastal wave analysis [102], atmos-
pheric modeling [103], iterative solvers for finite-element
methods [104], and performance simulations of an
MPI/OpenMP code for the N-body problem under the
HeSSE environment [105].

Nevertheless, as commented before, this model is not
always the most efficient alternative. For example, Cappello
et al. [106], Duthie et al. [107], Smith [108], Henty [109],
and Chow et al. [110] all show in several examples that the
pure MPI codes outperform their mixed counterparts despite
the underlying architecture.

66.3 Combining CUDA and Pthreads
This is an easy way to support multi-GPU parallelism. Thus,
using this model, one CPU thread is assigned to each GPU.
Therefore, each device has its own context on the host. An
example of this programming model can be found in [111]
applied to the Navier-Stokes solver. The main problem is
that the programmer has to split the code to provide the
same amount of work to each GPU.

Other way to apply this model is taking advantage of
multicore CPUs. For example, in [112] Pthreads are used to
preprocess some data that later are sent to the GPU to be
fully processed. In this way, CPU and GPU computations
are overlapped.

6.4 Combining CUDA and OpenMP
As in the previous case, OpenMP can be used to optimize
the generation of input data and their transference toward a
GPU. The problem is that CUDA cannot share the CPU and
GPU memories. That means that the GPU needs to receive
input data from the CPU to implement operations. Thus, to
take advantage of the efficiency of the GPU, it is essential to
minimize data transmission between the CPU and the GPU.
To tackle this problem, the authors in [113] have used
OpenMP, which allows the CPU to generate as much data as
possible (data preprocessing). Other example is found in
[114], where this model is used to implement a parallel cloth
simulation, which offers higher animation frame rates. On
the other hand, this model can be implemented using the
CPU to postprocess the results obtained in the GPU. This
has been applied in [115] to scene recognition issues.

Finally, as in the Pthreads case, this model could be used
to support multi-GPU parallelism. However, we have not
found any published work implementing this approach.

6.5 Combining CUDA and MPI
This model is useful for parallelizing programs in GPU
clusters. Here, the programming environment and the hard-
ware structure of cluster nodes are very different from tradi-
tional ones, because of the heterogeneous architecture model
based on the CPU and the GPU. Unlike traditional cluster
systems, this model separates process control tasks from
data computing tasks. In particular, MPI is used to control
the application, the communication between nodes, the data

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

J.DIAZ ET AL.: A SURVEY OF PARALLEL PROGRAMMING MODELS AND TOOLS IN THE MULTI AND MANY-CORE ERA 11

schedule, and the interaction with the CPU. Meanwhile,
CUDA is used to compute the tasks in the GPU [116], [117].

In the same way, this model can be applied to GPU clus-
ters where each node has several GPUs. The key concept is
similar: one MPI process is started per GPU. Since we must
ensure that each process has assigned a unique GPU iden-
tifier, an initial mapping of hosts to GPUs is performed. A
master process gathers all the host names, assigns GPU
identifiers to each host, such that no process on the same
host has the same identifier, and scatters the result back
[118], [119]. As an example, in [119] the authors optimize its
incompressible flow solver code using this model.

This programming model is not the ideal approach for
all parallel applications. There are instances where it deliv-
ers poor performance. In [120] Karunadasa and Ranasinghe
applied this model to Strassen [121] and Conjugate Gradient
[122] algorithms with different results. In the first algorithm
the approach has shown to work fine, whereas in the second
it was less effective. The authors provide two considerations
to make before trying to improve the performance of an
application using CUDA+MPI [120]:
- First: Does the algorithm have two levels of parallelism?

Only if the algorithm has a second level of parallelism
the second consideration (see next point) should be taken
into account.

- Second: Does the second level of parallelism have some
compute intensive part that can be processed in a GPU?
If it has not a considerable amount of work that can be
easily handled by the GPU, then there will not be many
performance increases by executing that second level pa-
rallel component with CUDA.

From the previous subsections a clear conclusion arises:
there is no general solution for hybrid parallelization even
when we consider the same architecture. In practice, the best
solution depends on the characteristics of each application.
Despite that, the hybrid models offer an attractive way to
harness the possibilities provided by current architectures.

77 LANGUAGES WITH PARALLEL SUPPORT

The previous sections have considered parallel programming
models. However, in the parallel programming field special
interest is due to languages with direct parallel support.
These languages are usually, but not always, HPC oriented.
From the parallel programming standpoint these languages
fall under the umbrella of the shared or distributed memory
models. From the plethora of proposed languages, we con-
sider here some representative examples of approaches not
yet considered in the previous sections.

7.1 Java
Java is one of the most popular languages for common ap-
plications, but it is also a parallel programming language. In
fact, Java was designed to be multithreaded [123]. This
design allows the Java Virtual Machine (JVM) to take ad-
vantage of multicore systems for critical tasks such as Just-
In-Time (JIT) compilation or Garbage Collection. In [124],
the authors study the performance of Java using different
benchmarks. They get an overall good performance for basic

arithmetic operations. With respect to intensive computa-
tions, their implementation of the Java NAS Parallel
Benchmark [125] shows a similar performance that the For-
tran/MPI one. However, the scalability is an issue when
performing intensive communications, but this problem can
be tackled using optimized network layers [126].

Java includes type safety and integrated support for paral-
lel and distributed programming. Java provides Remote
Method Invocation (RMI) for transparent communication
between Java Virtual Machines (JVMs).

With respect to HPC, Java has the appeal of high level
constructs, memory management, and portability of applica-
tions. In addition, current Java implementations, thanks to
Just-In-Time compilers, are only about a 30% slower than
native C or Fortran applications [127], [128]. This is a great
improvement over the initial Java performance, when pure
interpretation of bytecode was used. This performance was
estimated to be worse than that of Fortran by a factor of four
[129]. Therefore, over the years, Java is becoming more and
more interesting for HPC applications. Thus, is not a sur-
prise that the message passing model was proposed for use
under Java. To uniformize criteria, in 1998 the Message-
Passing Working Group of the Java Grande Forum [130]
was formed. This working group came up with an initial
draft for a Java message passing API specification. The first
implementation based on these guidelines was mpiJava
[131]. mpiJava was a set of Java Native Interface (JNI)
wrappers to native MPI packages. mpiJava paved the way
for other implementations such as the open source MPJ
Express [132] library. MPJ Express is a message passing
library for Java suitable for use on computer clusters and
multicore CPUs [133]. Reference [132] presents an interest-
ing comparison of Java and MPJ Express vs. C and MPI by
considering the Gadget-2 massively parallel structure forma-
tion code used in cosmology. The results show that the Java
version is comparable to the C one.

7.2 High Performance Fortran (HPF)
High Performance Fortran (HPF) [134] is an extension of
Fortran 90 with constructs supporting parallel computing.
HPF is maintained by the High Performance Fortran Forum
(HPFF) [134]. The first version was published in 1993. The
language was designed to support the data parallel pro-
gramming pattern. In this pattern, a single program controls
the distribution of data across all processors. It also controls
the operations on these data. A primary design goal of HPF
was that it would enable top performance on parallel com-
puter architectures without sacrificing portability [135].

HPF represents a simple way to work in distributed
memory environments. The language syntax presents a
global memory space to the programmer, eliminating the
necessity of understanding message passing issues [136].
Examples of application to typical problems such as heat
distribution, the N-Body problems or the LU decomposition
can be found in [136].

7.3 Cilk
Cilk is a multithreaded language [137]. Thus, it implements

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

a shared memory approach suitable for current multicore
CPUs. Cilk is C based and was developed at MIT in 1994.
The philosophy behind Cilk is that the programmer should
concentrate on structuring the program to expose parallelism
and exploit locality. Thus, the Cilk runtime system [137]
takes care of details like load balancing, paging, and com-
munication protocols. The Cilk scheduler uses a “work steal-
ing” policy to divide procedure execution efficiently among
multiple processors. Thus, idle processors can perform work
in benefit of busy ones. Unlike other multithreaded languag-
es, Cilk is algorithmic. This means that the runtime system
guarantees efficient and predictable performance [138]. A
Cilk proprietary extension to C++ is distributed by Intel as
Cilk Plus [139].

77.4 Z-level Programming Language (ZPL)
ZPL, originally called Orca C, was developed between 1993
and 1995 in the University of Washington, and was released
to the public in 1997 [140]. ZPL is an implicitly parallel
programming language [141]. This means that all the in-
structions to implement and manage parallelism are inserted
by the compiler. ZPL is a parallel array language designed
for high performance scientific and engineering computa-
tions. ZPL uses a machine model, the Candidate Type Archi-
tecture (CTA), which abstracts Multiple Instruction Multiple
Data (MIMD) parallel computers [141]. One of the goals of
ZPL is performance portability, understood as consistent
high performance across MIMD parallel platforms [141].
The cornerstone for ZPL’s performance portability is the
introduction of an explicit performance model [141].

ZPL is an extremely interesting approach. There are un-
deniable advantages in a language designed from the ground
up to provide an abstract MIMD machine model and a port-
able performance model. Thus, for instance, performance is
independent of the compiler and of the machine. However,
the last ZPL available version is an alpha version dating
back to 2000 [142]. In addition, although there are in the
literature interesting examples of its use [143], it seems that
the scientific and engineering community has not paid
enough attention to ZPL. ZPL has had a great influence in
the development of Chapel since part of the development
team also participates in Chapel’s developing.

7.5 Erlang
Erlang is a general-purpose, message passing concurrent
functional programming language and runtime environment.
Erlang started life in the telecommunications industry at
Ericsson, where its developers sought to create a language
for building telecommunications switches. In 1998, Erlang
became open source software [144]. Erlang has built-in
support for concurrency, distribution and fault tolerance.
Erlang's concurrency primitives provide more than just a fast
way to create threads. They also enable parts of an applica-
tion to monitor other parts - even if they are running on
separate hosts across the network - and restart those other
parts if they fail. Erlang's libraries and frameworks take
advantage of these capabilities to let developers build sys-
tems with extreme availability and reliability [145].

Due to its design orientation, Erlang is very efficient for
developing distributed, reliable, soft real-time concurrent
systems such as Telecommunication systems or Servers for
Internet applications. However, it is not well suited for ap-
plications where performance is a prime requirement, such
as HPC systems.

7.6 Glasgow Parallel Haskell
Glasgow parallel Haskell (GpH) is a concurrent version of
the functional Haskell language developed in the Glasgow
University [146]. GpH applies a semi-explicit deterministic
parallel programming model [147]. Here, the semantics of
the program remains completely deterministic, and the pro-
grammers are not required to identify threads, communica-
tion, or synchronization. They merely annotate subcomputa-
tions that might be evaluated in parallel, leaving the choice
of whether to actually do so to the runtime system. These so-
called sparks are created and scheduled dynamically, and
their grain size varies widely.

GpH supports execution on clusters of computers. At
present, the Glasgow Haskell compiler supports GpH lan-
guage constructs on shared memory machines.

8 DISTRIBUTED PROGRAMMING

No survey of the parallel programming landscape can be
complete without considering distributed programming.
Here, we have individual computing units interconnected by
some network. A detailed presentation of the distributed
systems topic can be found in [148]. According to the classi-
fication proposed in [148] what we can call “Distributed
Computing Systems” are those specifically oriented to HPC.
Examples are computer clusters and Grids of computers.
The parallel programming models useful in these systems
have been considered in the previous sections of this review.
Here, we will consider Grid computing. In addition, the
present section focuses in the colloquial meaning given to
Distributed Systems. That is, the Information Distributed
Systems considered in [148]. These systems are mainly, but
not exclusively, enterprise-oriented, with an emphasis on
interoperability among networked applications. Different
programming models, architectures and tools coexist here.
This leads to a somewhat confusing landscape. In this work,
we will use a chronological order to present the most repre-
sentative components of this fauna.

8.1 Grid Computing
The Grid concept was first presented by Foster and Kessel-
man in 1998 [149]. A computational Grid is defined as a
hardware and software infrastructure providing dependable,
consistent, and pervasive access to resources among differ-
ent administrative domains [149]. Therefore, grid computing
is a distributed computing model that permits the integration
of arbitrary computational resources over the Internet. An
updated and detailed presentation of Grid computing can be
found in [150]. Grid computing relies on a middleware layer
to achieve its goals. Different Grid middlewares do exist,
like gLite [151] produced in the EGEE (Enabling Grids for
E-sciencE) European project [152]. However, the de facto

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

J.DIAZ ET AL.: A SURVEY OF PARALLEL PROGRAMMING MODELS AND TOOLS IN THE MULTI AND MANY-CORE ERA 13

standard is the Globus toolkit [30], now in its 4 version. Like
any Grid middleware, Globus addresses four key elements:
Grid security, data management, resource allocation and
information services [150], [30].

The perspective of harnessing the computational power
of different machines makes the Grid an interesting option
for HPC. However, the heterogeneous nature of the re-
sources, and the bandwidths and latencies involved in the
Internet, prevents the treatment of concurrent problems
when communication among processes is important. An
ideal case to be run on the Grid is that of parameter sweep
problems, where several communication independent
processes are run simultaneously [153]. These embarrassing-
ly parallel problems can be tackled under a master/worker
parallel programming pattern [10]. The parameter sweep
model finds increasing applications in different scientific
areas for example: Bioinformatics [154], High-Energy Phys-
ics [155], or Molecular Science [153].

88.2 CORBA
In the beginning it was CORBA, we could say. CORBA
arises in the early 1990s as an attempt to permit interopera-
bility among different applications running on distributed
systems. CORBA is a standard defined by the Object Man-
agement Group [156]. The first really operative version was
the 2.0, released in 1997. CORBA 2.0 provided a standar-
dized protocol and a C++ mapping. The last CORBA ver-
sion is 3.1, released in 2008.

The CORBA specification provides a stable model for
distributed object-oriented systems [148]. At the core of this
model lays the concept of Remote Procedure Call (RPC)
introduced in 1984 by Birrel and Nelson [157]. RPC is as
simple as allowing programs to call procedures in another
machine. CORBA applications are composed of objects-
components with well defined interfaces that describe the
services they provide to other objects in the system. Applica-
tions complying with the CORBA standard are abstracted
from underlying languages, operating systems, networking
protocols and transports. Instead, they rely on object request
brokers to provide a fast and flexible communication and
object activation [158]. CORBA uses an interface definition
language (IDL) to specify the public interfaces that the ob-
jects present to the outside world. CORBA then specifies a
"mapping" from the IDL to a specific implementation lan-
guage like C++ or Java. Standard mappings exist for Ada, C,
C++, Lisp, Smalltalk, Java, COBOL, PL/I and Python.

CORBA has played a major role in the distributed pro-
gramming field. However, it has been somewhat relegated
due to the complexity of its API, and to the lack of security,
of versioning features, and of threads support. For a more
detailed discussion, see [159]. CORBA is used at present to
tie together components within corporate networks and for
developing real-time and embedded systems [159], [160],
[161]. In this last field CORBA is in widespread use.

8.3 DCOM
The Distributed Component Object Model (DCOM) is the
distributed version of Microsoft’s Component Object Model

[162]. DCOM was intended as a Microsoft alternative to
CORBA. As CORBA, DCOM is object-based and relies in
the use of RPC calls. DCOM was originally a proprietary
development for Windows. For these reasons it received
little acceptance. Now, there is an open systems implementa-
tion of DCOM, extended to UNIX, called COMsource
[163]. Microsoft finally dropped DCOM for the .NET
framework. For a comparison of DCOM and CORBA see
[164].

8.4 Web Services
While CORBA was being introduced in the late 1990s, the
web was growing and the first e-commerce applications
were developed. The first approach for these systems was a
client-server model where the client side was a web browser
that offers an interface to the user [148], [165]. However, the
need for applications that offer services to other applications
became soon apparent. In this context, the term Web service
was coined [148], [165]. Web services are distributed soft-
ware components that provide information to applications,
rather than to humans, using an application-oriented inter-
face. Web services are a distributed middleware technology
using a simple XML-based protocol to allow applications to
exchange data across the Web. Services are described in
terms of the messages accepted and generated. Users of such
services do not need to know anything about the details of
the implementation [165]. They only need to be able to send
and receive messages. The information is structured using
XML. Thus, it can be parsed and processed easily by auto-
matic tools [165]. Key to Web services are the Simple Ob-
ject Access Protocol (SOAP), the Web Services Description
Language (WSDL) and the Universal Description, Discov-
ery and Integration standard (UDDI).

SOAP is a lightweight protocol based on XML for Web
services to exchange messages over the Web [166]. Web
services support SOAP as communication protocol over
either HTTP or HTTPS. The SOAP specification is main-
tained by the XML Protocol Working Group of the World
Wide Web Consortium (W3C) [167].

WSDL is a specification (maintained by the W3C [168])
defining how to describe web services using a common
XML grammar [169]. Therefore, WSDL represents a corner-
stone of the Web service architecture, since it provides a
common language for describing services and a platform for
automatically integrating those services [169].

UDDI, on the other hand, establishes the layout of a data-
base containing service descriptions that will allow Web
service clients to browse for relevant services. UDDI is an
open industry initiative, sponsored by the Organization for
the Advancement of Structured Information Standards (OA-
SIS) [170]. UDDI provides a standardized service registry
format. This allows having a directory service storing ser-
vice descriptions. This directory permits Web service clients
to browse for relevant services automatically.

When a Web service is invoked, the SOAP request is sent
over the Internet until it reaches the server holding the ser-
vice. The server receives and processes the SOAP request by
means of a SOAP engine. This is an application running on
an appropriate application server. Some of the most popular

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

14 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

application servers are GlassFish [171], JBoss [172], Gero-
nimo [173] or Tomcat [174].

Web services expose public interfaces to the network.
Within the three-tier systems architecture model [175], the
business (logic) layer behind the public interfaces can be
implemented through EJB (Enterprise JavaBeans). EJB is
the server-side component architecture for the Java Platform
Enterprise Edition (Java EE) [176]. EJB technology enables
rapid and simplified development of distributed, transaction-
al, secure and portable applications based on Java technolo-
gy (called EJBs). In this context, Web services can be
thought of as wrappers used by EJBs to invoke external
services and to allow external services and clients to invoke
the EJBs. EJBs are the basic building blocks of software
applications on the J2EE platform, which has been the pre-
ferred choice for many enterprises for building large-scale,
web-accessed applications.

The ease with which Web services can be implemented,
and the ability to access them from any platform, has led to
their rapid adoption as virtualization agents that provide
common manageability interfaces to different resources
[165]. However, Web services are mainly business oriented
as stated in the classic definition by the UDDI consortium,
quoted in [165]: “… self-contained, modular business appli-
cations that have open, Internet-oriented, standards-based
interfaces”. The use of standards based in XML makes the
communication process between services inappropriate for
HPC applications. However, Web services are useful in e-
Science environments for defining workflows [177]. A rep-
resentative example is the EMBRACE collection of life-
science web services [178]. For a detailed review of the Web
services paradigm see [179].

A key difference between CORBA and Web services is
that CORBA provides an object-oriented component archi-
tecture. On the other hand, Web services are message based
(SOAP does not really deal with objects). Using CORBA the
coupling among the components of a system is usually high.
Web services, on the other hand, are loosely coupled entities,
which can work independently of each other.

88.5 SOA
Mingled with CORBA and Web services, we find the Ser-
vice-Oriented Architecture (SOA). SOA is an architectural
pattern stating that computational units (such as system
modules) should be loosely coupled through their service
interfaces for delivering the desired functionality. In the
well-known Erl’s book [180] SOA is defined as: “… a form
of technology architecture that adheres to the principles of
service-orientation. When realized through the Web services
technology platform, SOA establishes the potential to sup-
port and promote these principles throughout the business
process and automation domains of an enterprise.” The
services do not have to be Web services, though Web servic-
es currently represent the de facto technology for realizing
SOA [181]. The most important aspect of SOA is that it
separates the service implementation from its interface.
Therefore, the way the service performs the task requested
by the user is irrelevant. The only requirement is that the
service sends the response back to the user in an agreed-

upon format [182].

8.6 REST
The Representational State Transfer (REST), like SOA, is an
architectural style. REST was defined by Roy T. Fielding, in
its doctoral Thesis, as an architectural style for distributed
hypermedia systems [183]. REST specifies several architec-
tural constraints intended to enhance performance, scalabili-
ty, and resource abstraction within distributed hypermedia
systems. The first one is the uniform interface constraint.
That means that all resources must present the same inter-
face to the clients. The second is statelessness. Statelessness
implies that each request from client to server must contain
the information necessary to understand the request. Cach-
ing is the third REST architectural constraint. This constraint
requires that the data within a response to a request be im-
plicitly or explicitly labeled as cacheable or non-cacheable.
If the response is cacheable, then a client cache can reuse
that response data for later, equivalent, requests. Caching
improves performance and scalability. For a detailed presen-
tation of the implications of these constrains, see [184].

There is now an active REST vs. SOA debate. Both ap-
proaches have their strengths and weaknesses. The main
difference between SOA is that REST is resource oriented
rather than service oriented. For a detailed comparison of
REST and SOA, see [185].

8.7 Ice
In the chronological order used here, the newest arrival in
the distributed programming arena is the Internet Communi-
cations Engine (Ice). Ice, first released in 2003, is an object
oriented middleware for the development of distributed
applications. ICE, developed by ZeroC [186], is dual-
licensed under the GNU GPL and a commercial license. Ice
provides tools, APIs, and library support for building object-
oriented client-server applications. Ice has support for C++,
.NET, Java, Python, Objective-C, Ruby, and PHP [186]. For
a detailed presentation of the Ice middleware see [187]. Ice
represents a modern alternative to CORBA since it provides
an object model simpler and more powerful. This is
achieved by getting rid of inefficiencies, and by providing
new features such as user datagram protocol (UDP) support,
asynchronous method dispatch, built-in security, automatic
object persistence, and interface aggregation [188].

The distributed programming model presents serious
drawbacks for HPC applications. These are the existence of
limited bandwidths and large latencies among the computers
in the network. The amount of communication in HPC ap-
plications makes these factors critical. Therefore, HPC ap-
plications yield poor performance and do not scale properly
in actual heterogeneous and geographically disperse envi-
ronments. However, as seen before, embarrassingly parallel
problems can be efficiently tackled in distributed environ-
ments. This is due to the lack of communication among the
individual processes involved in these problems. In fact, the
key factor is the computing to communication ratio.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

J.DIAZ ET AL.: A SURVEY OF PARALLEL PROGRAMMING MODELS AND TOOLS IN THE MULTI AND MANY-CORE ERA 15

99 CONCLUSIONS

This work reviews the current parallel programming land-
scape. From the study a fact is clear: since the switch,
around 2003, of the microprocessor industry to the multicore
model, and the introduction of GPGPU, parallelism has
become a key player in the software arena. It would be de-
sirable that this trend would be clearly reflected in computer
science curricula.

The increasing relevance of parallelism in the computa-
tional field can be illustrated by considering its effect on the
computing literature over the last decade. Thus, Fig. 2
represents the number of hits in the Scopus database [189]
for some significant keywords: MPI, OpenMP, CUDA, and
OpenCL. We observe that MPI, i.e., the distributed memory
model, takes the lion’s share, with a huge increase in relev-
ance in the last decade. This can be attributed to the afforda-
bility of computer clusters as HPC systems, and to the re-
newed interest in parallelism after the concurrent revolution.
In fact, the distributed memory parallel programming ap-
proach is the most popular one. Therefore, the MPI library
has been the de facto standard in the HPC field for the last
two decades. Fig. 2 also shows that OpenMP exhibits a slow
but continuous increasing trend since 2003. Thus, a conse-
quence of the current widespread use of multicore systems is
a revival of the once almost forgotten shared memory paral-
lel programming model. However, the most significant fact
observed in Fig. 2 is the exponential growth of CUDA’s
relevance since its introduction in 2006. The data trend sug-
gests that GPU based systems could, at least, stand on an
equal footing with computer clusters in the foreseeable fu-
ture. Finally, we also observe a clear growing tendency in
OpenCL. OpenCL was introduced in 2008, but it seems that
this approach could have an exponential increase as CUDA
has.

The present study also shows that with current multicore
CPUs, computer clusters can mix distributed memory pro-
gramming, among the cluster nodes, with shared memory
parallel programming, within the cores of each node. Thus,
the hybrid parallel programming approach is becoming in-
creasingly popular. Hybrid parallel programming examples

involving GPUs can also be found in the literature. There-
fore, the hybrid approach offers a way to harness the possi-
bilities of current, and legacy, architectures and systems.

In addition, the easy availability of GPUs on multicore
systems is providing momentum to a new parallel program-
ming model: heterogeneous programming. This supersedes
pure GPU programming, allowing several multicore CPUs
and several GPUs to collaborate.

Among all the different approaches existing for profiting
from parallel systems those based on open industry stan-
dards are especially interesting. Open standards allow the
different actors involved in the parallel world to have a
voice, and contribute to their development. In words of Tim
Mattson from Intel [190]: “…the core to solving the parallel
programming challenge is standards”. From this standpoint
we have MPI for distributed memory and OpenMP for
shared memory. For the new heterogeneous platforms the
hole is filled by OpenCL. The open standards approach
seems to be the way to spread and uniformize the use of
parallel programming models.

REFERENCES
[1] D. Kirk and W. Hwu. Programming Massively Parallel Processors: A

Hands-on Approach, Morgan Kaufmann, San Francisco, 2010.
[2] W. Hwu, K. Keutzer, and T. G. Mattson, “The concurrency chal-

lenge”, IEEE Design and Test of Computers, vol. 25, no. 4, pp. 312-
320, Jul. 2008.

[3] H. Sutter, J. Larus. “Software and the Concurrency Revolution”,
ACM Queue, vol. 3, no. 7, pp. 54-62, 2005.

[4] W-C. Feng, P. Balaji, “Tools and environments for Multicore and
Many-core Architectures”, Computer, pp.26-27, Dec. 2009.

[5] R.R. Loka, W-C. Feng, P. Balaji, “Serial Computing is not dead”,
Computer, pp.8, Mar. 2010.

[6] J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy, L. Torczon and
A. White. The Sourcebook of Parallel Computing, Morgan Kaufmann
Publishers, San Francisco, 2003.

[7] H. Kasim, V. March, R. Zhang and S. See. “Survey on Parallel Pro-
gramming Model”, Proc. of the IFIP Int. Conf. on Network and Paral-
lel Computing, vol. 5245, pp. 266-275, Oct. 2008.

[8] M. J. Sottile, T. G. Mattson and C. E. Rasmussen, Introduction to
Concurrency in Programming Languages. CRC Press, 2010.

[9] G. R. Andrews. Foundations of Multithreaded, Parallel, and Distri-
buted Programming. Addison Wesley, 1999.

[10] T. G. Mattson, B. A. Sanders and B. Massingill. Patterns for Parallel
Programming. Addison-Wesley Professional, 2005.

[11] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to
Parallel Computing: Design and Analysis of Algorithms. Benja-
min/Cummings Publishing Company, 1994.

[12] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon and D. Walker.
Solving Problems on Concurrent Processors, vol. 1. Prentice Hall,
Englewood Cliffs, 1988.

[13] M.J. Quinn. Parallel Computing: Theory and Practice. McGraw-Hill,
New York, NY, 1994.

[14] P. B. Hansen, Studies in Computational Science: Parallel Program-
ming Paradigms. Prentice-Hall, Englewood Cliffs, NJ, 1995.

[15] K.M. Chandy and J. Misra, Parallel Program Design: A Foundation.
Addison-Wesley, Reading, MA, 1988.

[16] OpenMP. “API Specification for Parallel Programming”,
http://openmp.org/wp/openmp-specifications. Oct. 2011.

[17] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg,
W. Saphir and M. Snir, MPI: The Complete Reference, 2nd Edition,
Volume 2 - The MPI-2 Extensions. The MIT Press, Sep. 1998.

[18] K. Kedia, “Hybrid Programming with OpenMP and MPI”, Technical
Report 18.337J, Massachusetts Institute of Technology, May 2009.

[19] D. A. Jacobsen, J. C. Thibaulty and I. Senocak. “An MPI-CUDA
Implementation for Massively Parallel Incompressible Flow Compu-
tations on Multi-GPU Clusters”, 48th AIAA Aerospace Sciences Meet-
ing and Exhibit, Jan. 2010.

Fig. 2. Parallelism relevance trend in the computational
field.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

16 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

[20] H. Jang, A. Park and K. Jung. “Neural Network Implementation using
CUDA and OpenMP”, Proc. of the 2008 Digital Image Computing:
Techniques and Applications, pp. 155-161, Dec. 2008.

[21] POSIX 1003.1 FAQ. http://www.opengroup.org/austin/papers/\
posix_faq.html. Oct. 2011.

[22] D.R. Butenhof, Programming with POSIX Threads, Addison-Wesley,
Reading, 1997.

[23] IEEE, “IEEE P1003.1c/D10: Draft Standard for Information Tech-
nology - Portable Operating Systems Interface (POSIX)”, Sep. 1994.

[24] A. Grama, G. Karypis, V. Kumar, and A. Gupta, Introduction to
Parallel Computing, 2nd Edition. Addison-Wesley, Boston, 2003.

[25] B. Chapman, G. Jost, R. van der Pas, Using, OpenMP: Portable
Shared Memory Parallel Programming. MIT Press, 2007.

[26] OpenMP 3.0 Specification. http://www.openmp.org/mp-
documents/spec30.pdf. Oct. 2011.

[27] P. S. Pacheco, Parallel Programming with MPI, Morgan Kaufmann,
San Francisco, 1996.

[28] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel
Programming with the Message-Passing Interface, 2nd ed. MIT Press,
Cambridge, MA, 1999

[29] W. Gropp, E. Lusk, and R. Thakur, Using MPI-2: Advanced Features
of the Message-Passing Interface. MIT Press, Cambridge, MA, 1999.

[30] Globus. http://www.globus.org/. Oct. 2011.
[31] Message Passing Interface Forum, “MPI-2: Extensions to the Mes-

sage-Passing Interface”, Jul. 1997.
[32] W. Gropp and R. Thakur. “Thread Safety in an MPI Implementation:

Requirements and Analysis”, Parallel Computing, vol. 33, no. 9, pp.
595-604, Sep. 2007.

[33] M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma,
H.J.J. van Dam, D. Wang, J. Nieplocha, E. Apra, T.L. Windus, and
W.A. de Jong, "NWChem: a comprehensive and scalable open-source
solution for large scale molecular simulations" Comput. Phys. Com-
mun. Vol. 181, pp. 1477-1589, 2010. Downloadable from:
http://www.nwchem-sw.org. Oct. 2011.

[34] M. S. Gordon, and M. W.Schmidt, "Advances in electronic structure
theory: GAMESS a decade later", in Theory and Applications of
Computational Chemistry, the first forty years, C. E. Dykstra, G.
Frenking, K .S. Kim, G. E. Scuseria, eds. Elsevier, Amsterdam, Chap-
ter 41, pp 1167-1189, 2005. Downloadable from:
http://www.msg.chem.iastate.edu/GAMESS/GAMESS.html.Oct 2011

[35] H. Lin, X. Ma, W. Feng, and N. Samatova, "Coordinating Computa-
tion and I/O in Massively Parallel Sequence Search", IEEE Transac-
tions on Parallel and Distributed Systems, vol. 22, pp. 529-543, 2011.
Downloadable from: http://www.mpiblast.org. Oct. 2011

[36] M. Macedonia, “The GPU Enters Computing’s Mainstream”, IEEE
Computer, vol. 36, no.10, pp., 106-108, 2003

[37] AMD Fusion. http://sites.amd.com/us/fusion/apu/Pages/fusion.aspx.
Oct. 2011.

[38] Sandy Bridge. http://software.intel.com/en-us/articles/sandy-bridge/.
Oct. 2011.

[39] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,
and P. Hanrahan, “Brook for GPUs: Stream Computing on Graphics
Hardware”, Conf. in computer graphics and interactive techniques
(SIGGRAPH), 2004.

[40] W.R. Mark, R.S. Glanville, K. Akeley, M.J. Kilgard, “Cg: A System
for Programming Graphics Hardware in a C-like Language,” Conf. in
computer graphics and interactive techniques (SIGGRAPH), 2003. .

[41] CUDA Zone. http://www.nvidia.com/object/cuda_home_new.html.
Oct. 2011.

[42] Khronos Group. http://www.khronos.org/opencl. Oct. 2011.
[43] Microsoft DirectX Developer Center. http://msdn.microsoft.com/en-

us/directx/default. Oct. 2011.
[44] Sophisticated Library for Vector Parallelism: Intel Array Building

Blocks, Intel, 2010; http://software.intel.com/en-us/articles/intel-
array-building-blocks

[45] Nvidia Developer Zone. http://developer.nvidia.com. Oct. 2011.
[46] Nvidia Company. Nvidia CUDA Programming Guide, v3.0, 2010.
[47] Nvidia Company. Nvidia CUDA C Programming Best Practices

Guide, version 3.0, 2010.
[48] Michael Wolfe, “Compilers and More: Knights Ferry Versus Fermi”,

HPCwire, August 5, 2010.
[49] K. Skaugen. “Petascale to Exascale. Extending Intel’s HPC Commit-

ment”. Int. Supercomputing Conference (ISC'10) Hamburg, Germany,
2010.

[50] OpenCL 1.1 Specification. http://www.khronos.org/registry/cl/specs/\
opencl-1.1.pdf. Oct. 2011.

[51] Introduction to OpenCL. http://www.amd.com/us/products/technolo-
gies/stream-technology/opencl/pages/opencl-intro.aspx. Oct. 2011.

[52] W.D. Hillis and G.L.Steele, “Data Parallel Algorithms,” Communica-
tions of the ACM, 1986.

[53] M. Quinn, Parallel Programming in C with MPI and OpenMP,
McGraw-Hill, 2004

[54] OpenCL 1.1 C++ Bindings Specification. http://www.khronos.org/\
registry/cl/specs/opencl-cplusplus-1.1.pdf. Oct. 2011.

[55] Shader Model 5 (Microsoft MSDN). http://msdn.microsoft.com/en-
us/library/ff471356(v=vs.85).aspx. Oct. 2011.

[56] A. Ghuloum et al., "Future-Proof Data Parallel Algorithms and Soft-
ware on Intel Multi-core Architecture," Intel Technology J., vol. 11,
no. 4, pp. 333-347, 2007.

[57] W. Kim, M. Voss, “Multicore Desktop Programming with Intel
Threading Building Blocks”, IEEE Software, vol. 28, no. 1, pp. 23-31,
Jan./Feb. 2011

[58] Intel Threading Building Blocks.
http://www.threadingbuildingblocks.org. Oct. 2011.

[59] J. Krüger, and R. Westermann, “Linear Algebra Operators for GPU
Implementation of Numerical Algorithms”, ACM Transactions on
Graphics, vol. 22, pp. 908—916, 2003

[60] D.C., Rapaport, “Enhanced molecular dynamics performance with a
programmable graphics processor”, Comp. Physics Comm., vol. 182,
pp. 926-934, 2011

[61] F. Xu, and K. Mueller, "Accelerating popular tomographic reconstruc-
tion algorithms on commodity PC graphics hardware", IEEE Transac-
tions on Nuclear Science, vol. 52, pp. 654-663, 2005.

[62] S. A. Manavski, and G. Valle, "CUDA compatible GPU cards as
efficient hardware accelerators for Smith-Waterman sequence align-
ment", BMC Bioinformatics, vol. 9, sup. 2, pp. 1-9, 26 Mar. 2008.

[63] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E.
Lefohn, and T. J. Purcel, ”A survey of general-purpose computation
on graphics hardware”, Computer Graphics Forum, vol. 26, no. 1, pp.
80-113, 2007

[64] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips, "GPU Computing", Proceedings of the IEEE, vol. 96, no. 5,
pp. 879-899, 2008.

[65] J. Protic, M. Tomasevic, and V. Milotinuvic, “A survey of distributed
shared memory systems”, Proceedings of the 28th Hawaii Interna-
tional Conference on System Sciences (HICSS'95), pp. 74-84 (1990)

[66] C. Coarfa, Y. Dotsenko, J. Mellor-Crummey, F. Cantonnet, T. El-
Ghazawi, A. Mohanty and Y. Yao, “An Evaluation of Global Address
Space Languages: Co-Array Fortran and Unified Parallel C,” Proc. of
the 10th ACM SIGPLAN symp. on Principles and practice of parallel
programming, pp. 36-47, 2005.

[67] V. Saraswat, G. Almasi, G. Bikshandi, C. Cascaval, D. Grove, D.
Cunningham, O. Tardieu, I. Peshansky, and S. Kodali, “The Asyn-
chronous Partitioned Global Address Space Model,” 1st Workshop on
Advances in Message Passing, 2010.

[68] DARPA's. http://www.darpa.mil/Our_Work/MTO/Programs/High_
Productivity_Computing_Systems_(HPCS).aspx. Oct. 2011.

[69] D. Bonachea and J. Jeong, “GASNet: A Portable High-Performance
Communication Layer for Global Address-Space Languages,” CS258
Parallel Computer Architecture Project, 2002

[70] GASNet. http://gasnet.cs.berkeley.edu/. Oct. 2011.
[71] A. Mainwaring and D. Culler, “Active Messages: Organization and

Applications Programming Interface,” UC Berkeley Tech Repo., 1995.
[72] J. Nieplocha and B. Carpenter, “ARMCI: A Portable Remote Memory

Copy Library for Distributed Array Libraries and Compiler Run-time
Systems,” Proc. 3rd Workshop on Runtime Systems for Parallel Pro-
gramming (RTSPP) of IPPS/SPDP '99, 1999.

[73] J. Nieplocha, V. Tipparaju, M. Krishnan, and D. Panda, “High Perfor-
mance Remote Memory Access Comunications: The ARMCI Ap-
proach”, Int. J. of High Performance Computing and Applications,
vol. 20, pp. 233-253, 2006.

[74] Aggregate Remote Memory Copy Interface.
http://www.emsl.pnl.gov/docs/parsoft/armci. Oct. 2011.

[75] The KeLP Programming System.
http://cseweb.ucsd.edu/groups/hpcl/scg/kelp. Oct. 2011.

[76] S. J. Fink, S. R. Kohn, S. B. Baden, “Efficient Run-time Support for
Irregular Block-Structured Applications,” J. of Parallel and Distri-
buted Computing, vol. 50, pp. 61-82, 1998.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

J.DIAZ ET AL.: A SURVEY OF PARALLEL PROGRAMMING MODELS AND TOOLS IN THE MULTI AND MANY-CORE ERA 17

[77] W. Carlson, J. Draper, D. Culler, K. Yelick, E. Brooks and K. Warren,
“Introduction to UPC and Language Specification,” IDA Center for
Computing Sciences, Tech. Rep. CCS-TR-99-157, 1999.

[78] T. El-Ghazawi, W. Carlson, T. Sterling and K. Yelick, UPC: Distri-
buted Shared Memory Programming, John Wiley and Sons, 2005.

[79] Unified Parallel C. http://upc.gwu.edu/. Oct. 2011.
[80] R.W. Numrich and J.K. Reid, “Co-arrays in the next Fortran Stan-

dard,” ACM SIGPLAN Fortran Forum, vol. 24, 2005.
[81] Co-Array Fortran. http://www.co-array.org. Apr. 2011.
[82] http://www.nag.co.uk/sc22wg5/ Oct. 2011
[83] J. Reid," Coarrays in the next Fortran Standard", ACM SIGPLAN

Fortran Forum, vol. 29(2), pp. 10-27, 2010
[84] Titanium. http://titanium.cs.berkeley.edu. Oct. 2011.
[85] K. A. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A.

Krishnamurthy, P. N. Hilfinger, S. L. Graham, D. Gay, P. Colella and
A. Aiken, “Titanium: A High-Performance Java Dialect,” ACM 1998
Workshop on Java for High-Performance Network Computing, 1998.

[86] X10 Language. http://x10.codehaus.org. Oct. 2011.
[87] J. Muttersbach, T. Villiger and W. Fichtner. “Practical Design of

Globally-Asynchronous Locally-Synchronous Systems,” 6th Int.
Symp. on Advanced Research in Asynchronous Circuits and Systems
(ASYNC 2000), pp. 52-59, 2000.

[88] M. Weiland, “Chapel, fortress and x10: Novel languages for hpc,”
Tech. Rep. from the. HPCx Consortium, 2007.

[89] Chapel Language. http://chapel.cray.com. Oct. 2011.
[90] D. Callahan, B.L. Chamberlain and H.P. Zima, “The Cascade High

Productivity Language,” 9th Int. Worshop on High-Level Parallel
Programming Models and Supportive Environments (HIPS), pp. 52-
60, 2004.

[91] Project Fortress. http://projectfortress.java.net. Oct. 2011.
[92] G. Steele, “Fortress: A New Programming Language for Scientific

Computing,” Sun Labs Open House, 2005.
[93] T. Sterling, P. Messina, and Paul H. Smith. Enabling Technologies for

Petaflops Computing, MIT Press, 1995.
[94] C. Wright, “Hybrid Programming Fun: Making Bzip2 Parallel with

MPICH2 & pthreads on the Cray XD1”, CUG 2006 Proc., 2006.
[95] P. Johnson, “Pthread Performance in an MPI Model for Prime Number

Generation”, CSCI 4576 - High-Performance Scientific Computing,
University of Colorado, 2007.

[96] W. Pfeiffer, A. Stamatakis. "Hybrid MPI/Pthreads Parallelization of
the RAxML Phylogenetics Code", 9th IEEE Int. Workshop on High
Performance Computational Biology, Apr. 2010.

[97] L. Smith, M. Bulk, “Development of Mixed Mode MPI/OpenMP
Applications”, Workshop on OpenMP Applications and Tools (WOM-
PAT 2000), San Diego Supercomputer Center, Jul. 2000.

[98] R. Rabenseifner, “Hybrid parallel programming on HPC platforms”,
Proc. of European Workshop on OpenMP (EWOMP’03), 2003.

[99] B. Estrade, “Hybrid Programming with MPI and OpenMP”, High
Performance Computing Workshop, 2009.

[100]S. Bova, C. Breshears, R. Eigenmann, H. Gabb, G. Gaertner, B. Kuhn,
B. Magro, S. Salvini, and V. Vatsa, “Combining Message-passing and
Directives in Parallel Applications”, SIAM News, vol. 32, no. 9, 1999.

[101]I.J. Bush, C.J. Noble and R.J. Allan, “Mixed OpenMP and MPI for
Parallel Fortran Applications”, 2nd European Workshop on OpenMP,
2000.

[102]P. Luong, C.P. Breshears and L.N. Ly, “Costal ocean modeling of the
U.S. west coast with multiblock grid and dual-level parallelism”,
Proc. Supercomputing’01, 2001.

[103]R.D. Loft, S.J. Thomas and J.M. Dennis, “Terascale spectral element
dynamical core for atmospheric general circulation models”, Proc.
Supercomputing’01, 2001.

[104]K. Nakajima, “Parallel iterative solvers for finite-element methods
using an OpenMP/MPI hybrid programming model on the Earth Si-
mulator”, Parallel Computing, vol. 31, pp. 1048–1065, 2005.

[105]R. Aversa, B. Di Martino, M. Rak, S. Venticinque and U. Villano,
“Performance prediction through simulation of a hybrid MPI/OpenMP
application”, Parallel Computing, vol. 31, pp. 1013–1033, 2005.

[106]F. Cappello and D. Etiemble, “MPI versus MPI+OpenMP on the IBM
SP for the NAS benchmarks”, Conf. on High Performance Network-
ing and Computing, 2000.

[107]J. Duthie, M. Bull, A. Trew and L. Smith, “Mixed Mode Applications
on HPCx”, HPCx Consortium, Technical Report HPCxTR0403, 2004.

[108]L. Smith, “Mixed mode MPI / OpenMP programming”, Tech. Rep.
Technology Watch 1, UK High-End Computing, EPCC, UK, 2000.

[109]D. S. Henty, “Performance of hybrid message-passing and shared-
memory parallelism for discrete element modeling”, Proc. Supercom-
puting'00, 2000.

[110]E. Chow and D. Hysom, “Assessing Performance of Hybrid
MPI/OpenMP Programs on SMP Clusters”, Lawrence Livermore Na-
tional Laboratory tech. rep. UCRL-JC-143957, 2001.

[111]J. C. Thibault and I. Senocak, “CUDA Implementation of a Navier-
Stokes Solver on Multi-GPU Desktop Platforms for Incompressible
Flows”, 47th AIAA Aerospace Sciences Meeting, 2010.

[112]S. Jun Park and D. Shires, “Central Processing Unit/Graphics
Processing Unit (CPU/GPU) Hybrid Computing of Synthetic Aperture
Radar Algorithm”, Tech. rep. ARL-TR-5074, U.S. Army Research La-
boratory, 2010.

[113]H. Jang, A. Park and K. Jung, “Neural Network Implementation using
CUDA and OpenMP”, Proc. of the 2008 Digital Image Computing:
Techniques and Applications, pp. 155-161, 2008.

[114]G. Sims, “Parallel Cloth Simulation Using OpenMP and CUDA”,
Graduate Faculty of the Louisiana State University and Agricultural
and Mechanical College, Thesis Dissertation, 2009.

[115]Y. Wang, Z. Feng, H. Guo, C. He and Y. Yang, “Scene Recognition
Acceleration using CUDA and OpenMP”. 1st Int. Conf. on Informa-
tion Science and Engineering (ICISE2009), 2009.

[116]Q. Chen and J. Zhang, “A Stream Processor Cluster Architecture
Model with the Hybrid Technology of MPI and CUDA”, 1st Int. Conf.
on Information Science and Engineering (ICISE2009), 2009.

[117]J. C. Phillips, J. E. Stone and K. Schulten, “Adapting a Message-
Driven Parallel Application to GPU-Accelerated Clusters”, Proc. of
the 2008 ACM/IEEE Conference on Supercomputing, 2008.

[118]H. Schivea, C. Chiena, S. Wonga, Y. Tsaia and T. Chiueha, “Graphic-
Card Cluster for Astrophysics (GraCCA) - Performance Tests”, New
Astronomy, vol. 13, no. 6, pp. 418-435, 2008.

[119]D. A. Jacobsen, J. C. Thibault and I. Senocak, “An MPI-CUDA
Implementation for Massively Parallel Incompressible Flow Compu-
tations on Multi-GPU Clusters”, 48th AIAA Aerospace Sciences Meet-
ing proceedings, 2010.

[120]N. P. Karunadasa and D. N. Ranasinghe, “On the Comparative Per-
formance of Parallel Algorithms on Small GPU/CUDA Clusters”, Int.
Conf. on High Performance Computing, 2009.

[121]V. Strassen, “Gaussian Elimination is not Optimal”, Numerische
Mathematik, vol. 13, pp. 354-356, 1969.

[122]M. R. Hestenes, and E. Stiefel, ”Methods of Conjugate Gradients for
Solving Linear Systems,” Journal of Research of the National Bureau
of Standards, vol. 49, no. 6, 1952.

[123]A.E. Walsh, J. Couch and D.H. Steinberg, Java 2 Bible, Wiley Pub-
lishing, 2000.

[124]B. Amedro, V. Bodnartchouk, D. Caromel, C. Delbé, F. Huet and G.
L. Taboada. “Current State of Java for HPC,” Tech. Rep. RT-0353,
INRIA, 2008.

[125]Nas Parallel Benchmarks. http://www.nas.nasa.gov/Resources/\
Software/npb.html. Oct. 2011.

[126]R.V. Nieuwpoort, J. Maassen, G. Wrzesinska, R. Hofman, C. Jacobs,
T. Kielmann and H.E. Bal “Ibis: A Flexible and Efficient Java Based
Grid Programming Environment,” Concurrency and Computation:
Practice and Experience, vol. 17, pp. 1079–1107, 2005.

[127]G. L. Taboada, J. Touriño, and R. Doallo, "Java for high performance
computing: assessment of current research and practice", Proc. 7th
Int. Conf. on principles and practice of programming in Java
(PPPJ’09), pp. 30-39, 2009.

[128]A. Shafi, B. Carpenter, M. Baker, and A. Hussain, “A comparative
study of Java and C performance in two large-scale parallel applica-
tions”, Concurr Comput, Pract Exp., vol. 15, no. 21, pp. 1882-1906,
2010.

[129]B. Blount, and S. Chatterjee, (1999) "An evaluation of Java for nu-
merical computing", Scientific Programming, vol. 7, no. 2, pp. 97-
110, 1999.

[130] Java Grande Forum: http://www.javagrande.org/pastglory/index.html.
Oct. 2011.

[131]M. Baker, B. Carpenter, S. H. Ko, and X. Li, "mpiJava: A Java inter-
face to MPI", First UK Workshop on Java for High Performance Net-
work Computing, Europar 1998.

[132]A. Shafi, B. Carpenter, and M. Baker, "Nested parallelism for multi-
core HPC systems using Java", J. Parallel Distrib. Comput., vol. 69,
pp. 532-545, 2009.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

18 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

[133]G. L. Taboada, S. Ramos, J. Touriño, and R. Doallo, "Design of
efficient Java message-passing collectives on multi-core clusters", J.
Supercomput., vol. 55, pp. 126-154, 2011.

[134]High Performance Fortran. http://hpff.rice.edu/index.htm. Oct. 2011.
[135]H. Richardson, “High Performance Fortran: history, overview and

current developments,” Tech. Rep. TMC-261, Thinking Machines
Corporation, 1996.

[136]C. H. Q. Ding, "High Performance Fortran for practical scientific
algorithms: An up-to-date evaluation", Future Generation Computer
Systems, vol. 15, pp. 343-352, 1999

[137]R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson, K.H.
Randall and Y. Zhou, “Cilk: An Efficient Multithreaded Runtime Sys-
tem”, J. Parallel and Distributed Computing, vol. 37, pp. 55-69, 1996.

[138]Cilk Project. http://supertech.csail.mit.edu/cilk. Oct. 2011.
[139]Intel Cilk Plus. http://software.intel.com/en-us/articles/intel-cilk-plus.

Oct. 2011.
[140]B. L. Chamberlain, S.-E. Choi, E. C. Lewis, C. Lin, L. Snyder, and W.

D. Weathersby, "ZPL: A Machine Independent Programming Lan-
guage for Parallel Computers", IEEE Transactions on Software Engi-
neering, vol. 26, no. 3, pp. 197-211, 2000

[141]L. Snyder, "The design and development of ZPL", 3rd ACM SIG-
PLAN History of Programming Languages Conference, HOPL-III,
San Diego, CA, Jun. 2007

[142]Zpl Web:http://www.cs.washington.edu/research/zpl/home/index.html
Oct. 2011.

[143]H. Wu, G. Turkiyyahi, and W. Keirouzt, "ZPLCLAW: A parallel
portable toolkit for wave propagation problems", Proc. of the ASCE
Structures 2000 Congress, 2000.

[144]Erlang: http://www.erlang.org. Oct. 2011
[145]S. Vinoski, “Reliability with Erlang”, IEEE Internet Computing,

November-December, pp. 79-81, 2007
[146]P. W. Trinder, K. Hammond, H.-W. Loidl, and S. L. Jones, ”Algo-

rithm+Strategy=Parallelism”, Journal of Functional Programming,
vol. 8(1), pp., 23-60, 1998.

[147] S. Marlow, S. P. Jones, and S. Singh, "Runtime Support for Multicore
Haskell", ACM SIGPLAN Notices - ICFP '09, vol. 44(9), 65-78, 2009

[148]A. S. Tanenbaum and M. V. Steen. Distributed Systems. Principles
and Paradigms, Second Edition, Prentice Hall, 2007.

[149]I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing
Infrastructure, San Francisco, CA: Morgan Kauffman, 1998.

[150]B. Wilkinson, Grid Computing, Chapman & Hall/CRC, Boca Ratón,
FL, 2010

[151]gLite. http://glite.cern.ch. Oct. 2011.
[152]EGEE. http://www.eu-egee.org. Oct. 2011
[153]S. Reyes, C. Muñoz-Caro, A. Niño, R. M. Badia and J. M. Cela,

"Performance of computationally intensive parameter sweep applica-
tions on Internet-based Grids of computers: the mapping of molecular
potential energy hypersurfaces", Concurrency. Computat. Pract. Ex-
per., vol. 19, pp. 463-481, 2007

[154]C. Sun, B. Kim, G. Yi, and H. Park, "A Model of Problem Solving
Environment for Integrated Bioinformatics Solution on Grid by Using
Condor", Springer-Verlag LNCS, vol. 3251, pp. 935-938, 2004

[155]Large Hadron Collider (LHC) Computing Grid Project for High
Energy Physics Data Analysis. http://lcg.web.cern.ch/LCG. Oct. 2011

[156]OMG. http://www.omg.org/. Oct. 2011.
[157]A. Birrell and B. Nelson, “Implementing Remote Procedure Calls”,

ACM Trans. Comp. Syst., vol. 2, no. 1, pp. 39-59, 1984.
[158]S. Vinoski, “CORBA: integrating diverse applications within distri-

buted heterogeneous environments”, IEEE Communications Maga-
zine, vol. 35, no. 2, pp. 46-55, 1997.

[159]M. Henning, “The rise and fall of CORBA”, ACM Queue, pp. 28-34,
Jun. 2006.

[160]Y. Gong, "CORBA Application in Real-Time Distributed Embedded
Systems", Survey Rep., ECE 8990 Real-Time Systems Design, 2003.

[161]CORBA/e. http://www.corba.org/corba-e/index.htm. Oct. 2011
[162]COM. http://www.microsoft.com/com/default.mspx. Oct. 2011
[163]ComSource. http://www.opengroup.org/comsource/. Oct. 2011.
[164]P. Emerald, C. Yennun, H. S. Yajnik, D. Liang, J. C. Shih, C. Y. Wang,

and Y. M. Wang, "DCOM and CORBA Side by Side, Step by Step,
and Layer by Layer", C++ Report, vol. 10 no. 1,pp. 18-29, 1998

[165]G. Alonso, F. Casati, H, Kuno and V. Machiraju, Web Services: Con-
cepts, Architectures and Applications, Springer-Verlag, 2004.

[166]A. Gokhale, B. Kumar, and A. Sahuguet, "Reinventing the Wheel?
CORBA vs. Web Services", WWW2002 Conf. Proc., 2002.

[167]SOAP: http://www.w3.org/standards/techs/soap#w3c_all. Apr. 2011.

[168]WSDL. http://www.w3.org/TR/wsdl20/. Oct. 2011.
[169]E. Cerami, Web Services Essentials. Distributed Applications with

XML-RPC, SOAP, UDDI & WSDL, O’Reilly, 2002.
[170]http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=\

uddi-spec. Oct. 2011.
[171]http://glassfish.java.net. Oct. 2011
[172]http://www.jboss.org. Oct. 2011
[173]http://geronimo.apache.org. Oct. 2011
[174]http://tomcat.apache.org. Oct. 2011
[175]W. W. Eckerson, “Three Tier Client/Server Architecture: Achieving

Scalability, Performance, and Efficiency in Client Server Applica-
tions”, Open Information Systems, vol. 10, no. 1, 1995

[176]www.oracle.com/technetwork/java/javaee/ejb/index.html. Oct. 2011
[177]I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields (Eds.),

Workflows for e-Science, Springer-Verlag, London, 2007
[178]EMBRACE Service Registry: www.embraceregistry.net. Oct. 2011.
[179]A.Sahai, S. Graupner and W. Kim, “The Unfolding of the Web Servic-

es Paradigm”, Tech Rep. HPL-2002-130, Hewlett-Packard, 2002.
[180]T. Earl, Service-Oriented Architecture: Concepts, Technology, and

Design, Prentice-Hall, 2005
[181]S. Mulik, S. Ajgaonkar, and K. Sharma, “Where Do You Want to Go

in Your SOA Adoption Journey?”, IT Pro, pp. 36-39, May/Jun. 2008
[182]J. McGovern, S. Tyagi, M. Stevens, and S. Mathew, Java Web Servic-

es Architecture. Chapter 2. Service Oriented Architecture, Morgan
Kaufmann, 2003

[183]R. T. Fielding. “Architectural Styles and the Design of Network-based
Software Architectures”, PhD Dissertation, University Of California,
Irvine, 2000.

[184]R. T. Fielding, and R. N. Taylor, "Principled Design of the Modern
Web Architecture", ACM Transactions on Internet Technology, Vol. 2,
no. 2, pp. 115-150, May 2002

[185]S. Vinoski, “REST Eye for the SOA Guy”, IEEE Internet Computing,
pp.82-84, Jan.-Feb., 2007.

[186]ZeroC Ice. www.zeroc.com/ice.html. Oct. 2011.
[187]M. Henning, and M. Spruiell, Distributed Programming with Ice,

ZeroC, 2003. www.zeroc.com/Ice-Manual.pdf. Oct. 2011.
[188]M. Henning, “A New Approach to Object-Oriented Middleware”,

IEEE Internet Computing, pp. 66-75, Jan.-Feb. 2004.
[189]Scopus. http://www.scopus.com/home.url. Oct. 2011.
[190]“A Call to Arms for Parallel Programming Standards”, HPCWire,

SC10 Features, November 16, 2010

JJavier Díaz received his PhD degree in Computer Science from the
Castilla-La Mancha University, Spain. He was member of the QCy-
CAR- UCLM research group. At present, he is a Post doctoral fellow
at the Pervasive Technology Institute of the Indiana University. His
research interests are in the areas of cloud computing, computation-
al grids, scheduling algorithms, middleware and virtualization.

Camelia Muñoz-Caro received her PhD degree from the Complu-
tense University in Madrid, Spain. Her work covers Computer
Science and Molecular Physics. Formerly, she worked at the Nation-
al Research Council of Spain (CSIC) and she has been visiting
professor at the Brock University (Ontario, Canada). Currently, she is
member of the Department of Information Technologies and Systems
at the Castilla-La Mancha University, Spain, leading the SciCom-
UCLM research group. Her research interests involve parallel pro-
gramming models and their application to scientific and engineering
problems.

Alfonso Niño received his PhD degree from the Complutense Uni-
versity in Madrid, Spain. His multidisciplinary work involves Comput-
er Science and Molecular Physics. Formerly, he worked at the Na-
tional Research Council of Spain (CSIC) and he has been visiting
professor at the Brock University (Ontario, Canada). Currently, he is
member of the Department of Information Technologies and Systems
at the Castilla-La Mancha University, Spain and member of the
SciCom-UCLM research group. His research interests involve paral-
lel programming models and their application to scientific and engi-
neering problems.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

