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Abstract

Parameter sweep experiments (PSE) involve several issues. In this work, we consider
two of them: the generation of the parameters space and the scheduling of the associated
tasks. Thus, we propose a general model to generate the parameters space of any PSE
applying the Nested Summation Symbol operator. On the other hand, for the scheduling
of these kinds of problems, we test an adaptive scheduling approach with fault tolerance.
This approach has been implemented, using the DRMAA-C version for GridWay, to allo-
cate tasks in a Grid environment. In the tests, the scheduler shows a good performance.
Moreover, the CPU usage of the scheduler is quite low.

Keywords: Nested Summation Symbol, Adaptive Scheduling, Computational Grid,
Parameter Sweep

1. Introduction

Among the di�erent scienti�c and technological research �elds there is a huge amount
of problems involving the processing of many di�erent tasks. A usual characteristic of
these problems is that the associated tasks are independent. These kinds of problems
are very common in simulation experiments. This is because if experiments are run
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under multiple con�gurations, we can develop laws and theories that can encapsulate
knowledge of the systems being studied. Consequently, we can increase the predictive
abilities on di�erent conditions not yet studied. In practical terms, this means that we
need to perform multiple tests with di�erent input parameters. These kinds of problems
are examples of parameter sweep experiments (PSE) [1]. To deal with these problems
in realistic cases, it is necessary a large amount of computational power. Here, compu-
tational systems like Grids of computers have, and are, being used [2]. For this reason,
the parameter sweep model has emerged as a �killer application model� for composing
high-throughput computing (HTC) applications on global Grids [3, 4].

The parameter sweep model �nds increasing applications in di�erent scienti�c ar-
eas, for example: Bioinformatics [5�7], Earth Science [8], High-Energy Physics [9�11],
Molecular Science [12�15], Electrical Engineering [16], or Social Sciences [17].

In parameter sweep experiments there are several issues to tackle. First, we have to
generate the set of all possible combinations of input parameters. This is a hardworking
task, which should be automated. However, it is not trivial to provide a general solution,
since each problem has a di�erent number of parameters and each of them has it own
variation interval. Second, the scheduling of parameter sweep applications on distributed
environments, like a computational Grid, is a complex activity. For that reason, it is
necessary to develop e�cient scheduling strategies to appropriately allocate the workload
and reduce the associated computation time. Finally, it is necessary to monitor the
execution of the tasks. A task level monitoring approach, specially suited for application
to the Grid, has been proposed in [18].

In this work, we focus in the generation of the parameter space input set and in the
scheduling of the associated tasks for parameter sweep experiments. So, we present a
general approach to generate the parameter variations based on the Nested Summation
Symbol (NSS) operator. Moreover, we test an adaptive scheduling approach, with fault
tolerant support, to allocate e�ciently the tasks generated.

The rest of the paper is organized as follow. Section 2 presents an overview of the
NSS operator, and of the scheduling strategies to be tested. Section 3 details the design
of the general approach to generate input parameter sets using the NSS. In Section 4,
we give the details of the methodology used to test the scheduling approaches. Section 5
presents and interprets the results found in the study. Finally, in Section 6, we present
the main conclusions.

2. Background

Parameter sweep experiments (PSE) involve a large number of independent jobs,
since the experiment is runned under multiple initial con�gurations (input parameter
values). In addition, di�erent PSE's have di�erent number of parameters. Therefore, in
the most direct approach, for each study we need a di�erent number of loops to generate
the multiple con�gurations for the experiment. This is a troublesome task that would
be necessary to automate. One way to tackle this problem is resorting to the Nested
Summation Symbol (NSS) operator [19�21]. The NSS can be viewed as an operator
attached to an arbitrary number of nested sums. In other words, a NSS represents a set
of summations symbols where the number of these can be variable. The NSS operator
notation is:
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∑
n

(j = i, f, s) (1)

where the meaning of this convention corresponds to perform all sums involved in the
generation of all the possible values of the index vector j. The limits of the elements
conforming the vector j are

ik ≤ jk ≤ fk, ∀k = 0, n− 1 (2)

The index n is called the dimension of the NSS. Thus, the operator shown in equation
(1) represents the following set of n nested summations:

f0∑
j0=i0

f1∑
j1=i1

...

fn−1∑
jn−1=in−1

(3)

The operator performs all sums involved in the generation of all possible values of
the index vector j. In this formulation, the k-th index of the vector j runs on the values
ranging from ik to fk, with a particular step length. This step length is provided by the
step vector s = (s0, s1, ..., sn−1).

The NSS presents several interesting properties. First, it is a linear operator and,
second, the product of two NSS is another NSS, see reference [19]. These properties make
easy the application of the NSS to an increasing number of parameters or to generalize
simulation experiments involving di�erent parameter spaces.

The NSS operator was originally derived for dealing with nested summations in the
perturbation treatment of quantum-mechanical systems. However, it has been proposed
for di�erent mathematical applications [21]: generation of variations and combinations,
explicit expression of the determinant of a square matrix, or Taylor series expansion of
an n-variable function.

For processing the large number of tasks generated, PSE's need a large amount of com-
putational power. This can be provided by distributed systems like Grids of computers.
In these kinds of systems, to minimize the overall computing time it is essential a correct
assignment of tasks so that computer loads and communication overheads are well bal-
anced. This problem belongs to the active research topic of the development and analysis
of scheduling algorithms [22]. Di�erent scheduling strategies have been developed along
the years (for the classical taxonomy see [23]). In particular, dynamic self-scheduling
algorithms are extensively used in practical applications [24�26]. These algorithms rep-
resent adaptive schemes where tasks are allocated in run-time. Self-scheduling algorithms
were initially developed to solve parallel loop scheduling problems in homogeneous shared
memory systems, see for instance [24]. These kinds of algorithms divides the set of tasks
into subsets (chunks), and allocates them among the processors. In this way overheads
are reduced.

Although self-scheduling algorithms were derived for homogeneous systems, they can
be applied to heterogeneous ones such as computational Grids [25�27]. However, the
problem could be the �exibility of these algorithms to adapt e�ciently to a heterogeneous
environment. Thus, we previously proposed two new �exible self-scheduling algorithms
called Quadratic Self-Scheduling (QSS) and Exponential Self-Scheduling (ESS) [27]. The
�rst is based on a quadratic form for the chunks distribution function. Therefore, it has
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three degrees of freedom, which provide high adaptability to distributed heterogeneous
systems. The second approach, ESS, is based on the slope of the chunks distribution
function. In this case, we consider that the chunks distribution function decreases in an
exponential way. This algorithm provides good adaptability in distributed heterogeneous
systems using two parameters. Moreover, in previous works [27] we have compared QSS
and ESS with other self-scheduling algorithms in an actual Grid environment. QSS and
ESS algorithms outperform the previous ones, obtaining better load balance and more
reduction of the communication overhead.

However, a computational Grid is made up of a large number of independent resource
providers and consumers, which run concurrently, change dynamically, and interact with
each other. We can use Adaptive Grid scheduling [28, 29] to tackle the problem of the
unpredictable changing conditions. In general, adaptive scheduling can consider, among
others, factors such as availability, performance, workload, bandwidth and latency of the
interconnection links. Thus, previously [30�32] we introduced a new fault tolerant adap-
tive approach to scheduling tasks in dynamic Grid environments. Using this approach,
new optimal QSS and ESS parameters were obtained when the environment changes.
Additionally, this scheduling approach has been implemented to create a fault tolerant
simulation-based scheduler [33]. To such an end, we simulate the environment and apply
a simulated annealing to obtain the QSS and ESS optimal parameters. Moreover, when
the environment changes, or a job fails, we recalculate the list of chunks including, if
necessary, the failed tasks. Therefore, this scheduler allows to handle correctly dynamic
environments where processors appear and disappear during the execution.

3. General Model for the Generation of the Input Parameter Space

When dealing with arbitrary PSE's, the starting problem is to develop a general
approach to the generation of the di�erent input parameter values. Since the parameter
values can be indexed, to generalize the treatment we must focus in the parameter indexes
rather than in the parameter values. This problem can be tackled by using some concepts
of set theory. Thus, we are looking for the generation of all the elements of the input
space set, I, for a total of n di�erent parameters, or in other words:

How can we generate all the di�erent groups of n elements that can be formed from

n sets of elements of di�erent cardinality, with the restriction that we can use only one

element from each set?

If the n parameter indexes sets are labeled as Pi, 0 ≤ i ≤ n− 1, the total number of
groups of n elements is given by the product of the cardinalities:

| I | =
n−1∏
i=0

| Pi | (4)

This result shows that the I set can be generated from the direct sum of the Pi sets.
The most direct form to obtain this direct sum, and generate all the elements of I, is to
use a series of n nested symbols, one for each Pi set. For a given loop acting on the Pi

indexes, this is equivalent to a NSS operator of dimension 1 where the i vector equals 0
and the s vector equals 1, in short

∑
1(ji, fi). Taking into account the properties of the

NSS operator [19�21] we have,
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f0∑
j0=0

·
f1∑

j1=0

· · ·
fn−1∑

jn−1=0

=
∑
1

(j0, f0) ·
∑
1

(j1, f1) · · ·
∑
1

(jn−1, fn−1) (5)

=
∑
n

(j0 ⊕ j1 ⊕ · · · jn−1, f0 ⊕ f1 ⊕ · · · fn−1) =
∑
n

(j, f)

Therefore, we have two ways to generate the I set. First, to use a set of nested loops.
This is the usual option, but it needs modi�cation each time the number of parameters,
loops, changes. Second, to implement an n-dimensional NSS operator. This option
is general since the number of loops is a datum. Here, we develop and implement two
di�erent general solutions for the NSS operator for PSE problems. Both implementations
make use of a function pointer, which provides us a way to generalize the treatment to
any problem we need.

First, we present an iterative solution, called NSSI. This is a particularization to PSE
cases of the solution proposed in [19�21]. Here, we consider starting indexes of zero and
step increments of one, see Pseudocode 1. This case corresponds to equation (1).

Pseudocode 1: NSSI: NSS Iterative Case

Procedure NSSI
get number o f parameters , n
get f i n a l indexes vector , f
get f unc t i on to apply indexes vec to r // A func t i on po in t e r can be used
i n i t i a l i z e cur rent indexes vector , j , to zero
unv i s i t ed_loops=n−1
while unv i s i t ed_loops >= 0 do

i f j [ unv i s i t ed_loops ] > f [ unv i s i t ed_loops ] then
j [ unv i s i t ed_loops ] = 0
decrement unv i s i t ed_loops by one

else
apply func t i on with the cur rent j vec to r
r e s e t unv i s i t ed_loops to n−1

end_if
i f unv i s i t ed_loops >= 0 then

j [ unv i s i t ed_loops ] = j [ unv i s i t ed_loops ]+1
end_if

done_while
end_Procedure

On the other hand, we propose a recursive solution, called NSSR. Again, the initial
indexes are zero and the step increment is one, see Pseudocode 2.

Pseudocode 2: NSSR: NSS Recursive Case

Procedure NSSR
get number o f parameters , n
get f i na l_ indexe s vector , f
get f unc t i on to apply indexes vec to r // A func t i on po in t e r can be used
f i n a l i z e=f a l s e
i n i t i a l i z e cur rent indexes vector , j , to zero
i f current_loop_index < n then

for value from 0 to f [ current_loop_index ] do
j [ current_loop_index ]=value
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if_not NSSR ( j , f , parameters_number , current_loop_index+1,
func t i on ) then
apply func t i on with the cur rent j vec to r

end_if_not
f i n a l i z e=true

end_for
end_if
return f i n a l i z e

end_Procedure

The two previous solutions meet our requirements of generalization. First, both
procedures can handle an arbitrary number of parameters and an arbitrary number of
parameter values since they are input data. Second, the function that uses the parameter
values is also an input datum. This allows using both procedures in any knowledge
�eld. It is interesting to note that the �function� using the parameters can represent an
arbitrary work�ow formed by system calls.

4. Methodology

In this work, we generate di�erent PSE input spaces and perform several tests to
determine the performance of the fault tolerant simulation-based scheduler in a dynamic
environment. We perform tests using the QSS and ESS algorithms. Moreover, we perform
the same tests using GSS [36], FSS [37] and TSS [38] to compare the behaviour.

As a test case, we consider the problem of the molecular potential energy hypersurface
mapping [15]. Thus, we consider the CF2 (Carbon di�uoride) molecule. This is a three-
dimensional problem depending on the two C-F distances and the F-C-F angle. The
parameter space of this PSE is obtained using the general model proposed in the Section
3. So, we only need to de�ne the function which generates the inputs and specify the range
of each parameter. Thus, small increments on these coordinates (parameters) are used to
generate 5611 independent input molecular structures. To generate another test case we
have duplicated the inputs getting 11222 independent input molecular structures. The
nuclear potential energy corresponding to each molecular structure is computed using
the Gamess [39] molecular structure code. The tasks have a random duration between 4
and 50 seconds.

The tests are carried out in an Internet-based Grid of computers formed by four
clusters. Three of them, Tales, Hermes and Aris, are located in the Universidad de
Castilla-La Mancha at Ciudad Real (Spain). Tales and Hermes consist of six and eleven
Pentium IV processors, respectively (CPU frequencies between 2.4 and 3.0 GHz). Aris
consists on six 64-bit Xeon processors with 2.4 GHz CPU frequency. The fourth cluster
(Popo) is in the Universidad de Puebla (Mexico). This last is formed by four 64-bit
Opteron biprocessors with 1.66 GHz CPU frequency. Each cluster uses a 100-Mbps Fast
Ethernet network, except Aris which uses Gigabit Ethernet. Connection between clusters
is achieved through Internet. The Grid uses Globus Toolkit 4.2.1 as basic middleware [2].
To allocate the tasks on the Grid we use the 5.2.1 version of the GridWay metascheduler
[34] through its DRMAA-C API [35].

We have considered the previous environment as dynamic. We start the execution
with six processors in Tales, six processors in Hermes, four processors in Popo and �ve
processors in Aris. During the execution we introduce changes in the system to allow
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processors to disappear and appear, see Table 1. The computations for each test case
have been performed three times, to obtain average results.

Table 1: Changes introduced in the system to represent a dynamic environment. The time is taken from
the start of the execution and is given in seconds.

Time Changes introduced

1200 A processor disappears from Tales
1500 A processor disappears from Hermes
2200 Two processors appear in Hermes
2800 Two processors appear in Hermes &

a processor appears in Aris
3800 The cluster Tales disappears
4400 Two processors appear in Hermes
4900 The cluster Tales appears

5. Results and Discussion

We have mapped the potential energy hypersurface of the CF2 molecule in the dy-
namic environment. Figure 1 shows the behaviour of the simulation-based scheduler using
the QSS and ESS algorithms. In addition, the behaviour of previous self-scheduling al-
gorithms, GSS [36], FSS [37] and TSS [38] is also shown. We see that the proposed
scheduler with QSS provides the best performance in both test cases. In particular, it
obtains a reduction over the total computation time between 11% and 15% with respect
to ESS. On the other hand, in the �rst test case (5611 tasks) the scheduler with QSS
and ESS is a 26% and a 17% more e�cient than the best of the other self-scheduling al-
gorithms (FSS), respectively. Meanwhile, in the second case (11222 tasks) QSS and ESS
are up to a 20% and a 6% better than FSS, respectively. This is because the simulation-
based scheduler obtains a good equilibrium between load balance and overheads, even
in a changing environment. This is due to the �exibility provided to the QSS and ESS
by the con�gurable parameters, which generate a good chunk distribution that reduces
the overheads keeping a good load balance. In addition, the tasks are rescheduled in
a transparent way by adding them into the pool of non-allocated tasks. In the second
case, the total improvement of the scheduler is lower than in the previous one, because
the execution environment is stable during an important part of the execution (since the
overall computation time of each algorithm is higher than before).

On the other hand, we have recorded the CPU usage of the scheduler during the
scheduling process. Each sample is taken each ten seconds. Figure 2 shows the percentage
of CPU used by QSS and ESS. We observe that in both cases we have a high CPU
usage at the beginning, since it calculates the optimal chunk distribution, and allocating
many chunks at the same time. However, during the rest of the scheduling process the
percentage of CPU used is only around 5-7%, except for QSS and the test case with
11222 tasks, where the CPU usage is around 9-13%.
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Figure 1: Computational cost to solve the test cases in a dynamic environment for the considered
scheduling strategies. The cost is given in seconds.

Figure 2: CPU usage of the scheduler when using QSS and ESS as basic strategies.

6. Conclusions

In this work, we presented a NSS-based general model to generate the parameters
space in parameter sweep experiments. Using this general model, we can handle any
number of parameters without any modi�cation of the generator. Thus, it is possible
to merge this process with the scheduling. In addition, we have tested an adaptive
scheduling approach to allocate large sets of tasks in distributed heterogeneous systems,
such as a Grid of Computers. This approach is focused on the e�cient allocation of tasks
among changing environments. We have implemented this approach into an scheduler
using the DRMAA API provided by GridWay, which allows a high compatibility with
di�erent Grid infrastructures.

We have used the general NSS-based model to generate the parameter space of the
experiment considered here. In this experiment, we have mapped the molecular potential
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energy hypersurface of the CF2 molecule in a dynamic environment. Thus, after gener-
ation of the parameter space, we have allocated it in a dynamic environment. To such
an end, we have used the scheduler, presented here, with the QSS and ESS algorithms.
Also we have allocated the tasks using other self-scheduling algorithms (GSS, TSS and
FSS) to compare the behaviour. The tests have shown that the scheduler with QSS and
ESS is up to a 26% and a 17% more e�cient than the best of the other self-scheduling
algorithms (FSS), respectively.
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