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An enhanced method for the reÐnement of kinetic and potential terms for large-amplitude vibrations has been shown. To ensure
the search for a minimum, the quadratic error between the observed and calculated energy levels is minimized with a quasi-
Newton algorithm using a positive-deÐnite Hessian matrix. In addition, analytical derivatives are obtained for computation of the
gradient vector.

Recently, a method for the reÐnement of kinetic and potential
terms for large-amplitude vibrations has been proposed.1 This
method minimizes the square di†erence, i.e. the error, between
the observed and calculated energy levels using a quasi-
Newton approach. The method is second order with respect
to the Taylor expansion of the error. This represents an
advantage over a classical least-squares reÐnement as the con-
vergence is faster. In the original implementation2 the mini-
mization procedure did not impose a positive deÐniteness to
the Hessian. Thus, we cannot be sure of searching for a
minimum. In addition, the gradients were calculated numeri-
cally. These facts translate to large amounts of computation
time when several large-amplitude vibrations are considered.
In this work we present a way of overcoming these limi-
tations.

The Ðrst step is to obtain analytical expressions for the
derivatives of the error. The calculated energy levels are
obtained from the following pure vibrational hamiltonian for
n large-amplitude vibrations3
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where are the kinetic terms, V is the potential and andB
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jrepresent vibrational coordinates. The previous expression

accounts for the non-commutability of the elements andB
ijthe momentum, operator. The kinetic terms and theL/Lq

i
, B

ijpotential, V , are obtained by expanding them in a Fourier or
Taylor series on the vibrational coordinates. This hamiltonian
is variationally solved using free rotor and/or harmonic oscil-
lator basis functions for each vibration, depending on the
boundary conditions.4 The matrix elements for the hamilto-
nian are
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where / represents the basis functions expressed as
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In eqn. (3), g represents free rotor or harmonic oscillator
eigenfunctions.

The kinetic and potential contributions are obtained by
substitution of eqn. (1) and (3) into eqn. (2).4(a) The kinetic
elements are, for i D j
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Whereas for i\ j we have
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The potential contribution is obtained as
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In the previous equations f represents the polynomic or trigo-
nometric terms in the Fourier or Taylor expansions of andB

ijV .
After calculation of the energy levels, the reÐnement is

applied by computing a quadratic error function, S.
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In eqn. (7), the index runs on the considered energy levels, ec
represents the calculated energy levels and eo the observed
values. In addition, C is a vector formed by the kinetic, B

ij
,

and the potential, terms. Expanding the error in a second-V
i
,

order Taylor series on the C parameters, we obtain
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where +S(C) is the gradient of S(C) with respect to C, isH(C
n
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the Hessian of S(C), and q is Considering toC
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Eqn. (9) represents an iterative technique for the location of
the minimum.

The gradient components of the error are deÐned as
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and the gradient with respect to some kinetic or potential
term, is obtained asC
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In eqn. (11) the derivatives of the calculated energy levels
deÐne the Jacobian matrix, J, whose elements are
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Thus, from eqn. (12) and using energies relative to the Ðrst, e0 ,
energy level, we obtain
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with being the eigenfunctions corresponding to the di†er-W
ient energy levels obtained in the variational procedure
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where are the variational coefficients. The analytical JC
mmatrix is obtained considering that the derivatives of varia-

tional parameters do not appear in the gradient formula.5
Therefore, by substitution of eqn. (14) into eqn. (13) we get
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with d being the Kronecker delta. When and areW
i

W0expanded on the same basis functions eqn. (15) reduces to
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Since the hamiltonian is linear on the C parameters, isLHŒ /LC
jeasily obtained by making and in eqn. (4)È(6).C

j
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Substitution of eqn. (15) and (16) into eqn. (11) yields the
desired analytical derivatives.

To impose the positive deÐniteness of the Hessian, H, in
each step of eqn. (9), we introduce the BFGS, or positive deÐ-
nite secant, updating algorithm.6,7 Thus

A
n`1\ A

n
]

q
n
T É q

n
g
n
T É [A

n
É g

n
]T

[
A

n
É g

n
É [A

n
É g

n
]T

g
n

É A
n

É g
n

] g
n
T É [A

n
É g

n
]T (17)

where andA
n
\ H

n
~1, q

n
\ C

n`1[ C
n

g
n
\ +S(C

n`1)The BFGS algorithm ensures that the Hessian[ +S(C
n
).

remains positive deÐnite on all updates. Therefore, we gener-
ate a series of search directions that always lower the error
given by eqn. (7). The initial Hessian is chosen as a diagonal
positive-deÐnite matrix where the diagonal elements are 0.01
times the absolute value of the ratio.C

i
/g

iThe BFGS is a locally convergent method, i.e., it will con-
verge to the solution providing it starts close enough to the
answer. In the present case, we enhance the minimization
including a global convergence strategy. Thus, we introduce a

Table 1 Comparison of the original, case a, and the new, case b,
procedures for the reÐnement of kinetic and potential terms for large-
amplitude vibrations

S0 T1
N 5 35
case a 58 31196
case b 52 1322

The table shows the results, in seconds of real time, for the andS0 T1states of acetaldehyde obtained in a DEC Alpha Station 166/200. N
represents the number of terms (kinetic ] potential) to reÐne.

parameter, j, giving the minimum of the function along the
search direction.
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The value of j is obtained by performing a one-dimensional
minimization in the search direction until the new quadratic
error is signÐcantly smaller than the previous.7

The performance in computation time of the new formula-
tion is compared to the initial one in Table 1. Table 1 shows
the results for the two cases used to test the initial formula-
tion,1 namely, the methyl torsion in the state of acetal-S0dehyde and the methyl torsion plus carbonyl hydrogen
wagging in the state of acetaldehyde. The results show thatT1for one-dimensional problems the new formulation slightly
improves the previous results. However, a dramatic improve-
ment is achieved when the number of vibrations increases and,
in consequence, the number of kinetic and potential param-
eters and the size of the Hamiltonian increase as well. Thus,
the new formulation is well suited to the study of several
large-amplitude vibrations.
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